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Abstract

A model of belief dependent preferences in finite multi-stage games with ob-
servable actions is proposed. It combines two dissimilar approaches: incomplete
information (Levine, 1998) and intentionality (Dufwenberg and Kirchsteiger, 2004;
Falk and Fischbacher, 2006). Incomplete information is important because social
preferences are not directly observable; intentions are found to be indispensable
in explaining behavior in games (Falk, Fehr, and Fischbacher, 2008). In the model
it is assumed that the players have social attitudes that define their social pref-
erences. In addition, players care differently about the payoffs of other players
depending on their beliefs about their social attitude and possibly on the beliefs
of higher orders. As the game unfolds players update their beliefs about the types
of other players. An action of a player shows intention when she chooses it antic-
ipating future belief updating by others. A reasoning procedure is proposed that
allows players to understand how to update beliefs by constructing a sequence
of logical implications.
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1 Introduction

Many experimental studies have shown that strategic behavior is influenced by reci-
procity and/or various forms of social preferences (e.g. Fehr and Gächter, 2000; Falk,
Fehr, and Fischbacher, 2008). This lead to the attempts to model such behavioral phe-
nomena in games. Two broad classes of models have emerged: 1) incomplete informa-
tion models, in which players in the game have private information about their own
social preferences, but not about social preferences of others (Levine, 1998) and 2) in-
tentionality models, where players infer good or bad intentions of the opponents from
the observed actions and act upon their inferences (Dufwenberg and Kirchsteiger,
2004; Falk and Fischbacher, 2006; Cox, Friedman, and Gjerstad, 2007).

Both approaches are important in order to understand the effects of behavioral
“biases” on strategic interactions.1 For example, Fischbacher and Gächter (2010) pro-
vide strong evidence that people are highly heterogeneous in their propensity to condi-
tionally cooperate in public goods game. This means that incomplete information is
crucial for the modeling of social preferences and reciprocity since these traits cannot
be directly observed before the game starts. In a very elegant experiment McCabe, Rig-
don, and Smith (2003) show that the behavior in a simple sequential game depends
on the availability of additional, rarely taken, action. This demonstrates that people
in strategic situations evaluate other players’ intentions and react to counter-factuals
or to what could have happened in the game.2 Therefore, a good theory of reciprocal
behavior has to include some form of evaluation of others’ intentions.

Even though the models mentioned above capture important behavioral features
they have certain drawbacks. In the standard incomplete information models (like
Levine, 1998) it is assumed that each player has fixed social utility which is unob-
served by others. This implies that players in these models are unable to react to any
intentionality as it requires a change in attitude towards other player depending on
her action.3 Moreover, it is not inconceivable that people are able to “use” different
social preferences when interacting with different people. The simplest example of
this is food sharing practices among kin versus non kin. Fiske (1990) reports that in-

1By “bias” I mean deviations from pure self-interest.

2Falk, Fehr, and Fischbacher (2008) also show importance of intentions.

3In the incomplete information game behavior can depend on the observed action of other player
if the observer Bayesian-updates her beliefs regarding the type of the other player. However, this
change is fundamentally different from reaction to intentions. In the case of Bayesian updating player
just changes her best response because she has better information about the type of the other player
and thus about other player’s future choices.
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digenous people of the Moose Culture willingly divide food among kin, but rather
reluctantly share it with other tribesmen. More economically relevant example is sta-
tus seeking preferences in urban ethnically similar populations. Members of these
groups invest into goods that signal their social status. However, they do not take
into account the status of the outsiders (Charles, Hurst, and Roussanov, 2009). In ad-
dition, Cox, Friedman, and Gjerstad (2007) provide an extensive list of experimental
results that can only be reconciled under the assumption that subjects’ social prefer-
ences depend on the roles of others and context.

Intentionality models like DK and FF (correspondingly: Dufwenberg and Kirch-
steiger, 2004; Falk and Fischbacher, 2006) incorporate intentions by assuming that
players assess relative kindness of the action of the opponent by comparing payoffs
that could have been achieved should the opponent choose differently with the payoffs
that can be achieved given the actual choice. The action is deemed kind if the opponent
chose so that achievable payoffs are better than now non-achievable (and unkind if
the opposite is true). After the kindness of the action is calculated, player responds
to kindness with kindness and vice versa.4 In both papers an equilibrium concept is
developed to deduce the optimal behavior. It is also assumed that players have per-
sonal preferences parameter that regulates the strength of their reciprocal response to
kind actions. Therefore, in equilibrium players should know the parameters of others
with certainty. However, as was mentioned above, it is not clear how players can ob-
tain this information before the game begins. Thus, the realism of the intentionality
approach suffers from the lack of incomplete information.

The goal of this paper is to develop a framework in which incomplete information
about social preferences of others coexists with inferences about intentionality (and,
therefore, with changes of utility depending on these inferences). In order to achieve
this a somewhat different perspective should be taken on what it means to infer informa-
tion about intentions. In particular, the questions are: 1) How should such inferences be
made if players have incomplete information about social preferences of others? and
2) How should reciprocity be defined in this situation? The approach taken in this
paper is the following. There is a set of social utilities that both players can possibly
exhibit and the set of “labels” called social attitudes.5 These objects are game indepen-
dent similarly to standard incomplete information case where utilities of the players
are defined only on the payoffs and not on any other features of the game. Before the

4The utility function changes in order to reflect this desire of the player.

5In what follows the case of two players will be considered for the ease of exposition. Social utility,
thus, means utility defined over payoffs of a player herself and payoffs of the other player.
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game each player knows her social attitude but is uncertain (holds probabilistic be-
lief) about social attitudes of other players; their beliefs about her social attitude; and
so on. The new element in the model is the connection between social attitudes and
social utilities. In particular, it is assumed that social utility of a player can depend
on her beliefs about social attitudes of the other player and beliefs of higher orders.
Thus, each player’s hierarchy of beliefs about social attitudes gives rise to the hier-
archy of beliefs about social utilities. As the game unfolds players can update their
beliefs about social attitudes depending on the game structure and the actions taken
by the opponent. But, since social utilities of the players depend on their beliefs about
social attitudes of others, this belief updating will also change players’ social utilities.

The construction just described allows players to have incomplete information
about other player’s social utility and at the same time makes it possible for them
to change their “attitude” towards other player depending on what the other did.
To illustrate, suppose there are two social attitudes: Selfish and Nice. If a player has
social attitude Selfish, then she has self-interested utility uS regardless of the beliefs
about other player’s social attitude.6 However, if player is Nice, then her social utility
depends on her beliefs. If she thinks that other player is also Nice, then her social
utility uN is altruistic (increases in the payoff of other player); but if she believes that
the other person is Selfish and thus does not care about her payoff, then she does not
feel like she has to be any different towards the other player and thus her utility is
also self-interest (uS). Given these assumptions, Nice player can now make inferences
about social attitudes of the other player by observing actions taken in the game. If
some action is only consistent with the other player being Nice (and believing that she
is Nice), then her social utility becomes uN which corresponds to reciprocal response.

The model is rather flexible and can be used to test variety of hypotheses regard-
ing reciprocal behavior. For example, in the previous paragraph (positive) reciprocity
was defined as altruism of Nice players towards other Nice players. However, there
exists another view on the nature of reciprocal relationships. It is, in particular, pos-
sible that people who positively reciprocate do it not because they become genuinely
altruistic towards others, but because they only want others to believe that they are
positive reciprocators. Such belief of others can be very important for profitable fu-
ture interactions. In our framework this can be captured by making utility depend
on the second order beliefs (beliefs of the other player). We can assume that if player
is Selfish then her utility is uS if she believes that other player thinks she is Selfish;

6uS depends only on the payoffs of the player herself.
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and uS + b, where b is a positive constant, if she believes the other player thinks she is
Nice. The same can be true about Nice player. The games then can be found in which
two models of reciprocity make differential predictions.

The paper is structured as follows. Section 2.1 gives main definitions. In section
2.2 it is shown how the players reason about what is expected to happen in the game.
Section 2.3 deals with the belief updating mechanism. Section 2.4 describes general
reasoning procedure. Section 2.5 relates the model to psychological games. And
section 3 provides some examples.

2 The Model

The model consists of two main ingredients: the game and the description of the
behavioral types. Consider any finite extensive form game of perfect information
with two players and the finite set Θ of attitudes. For example, Θ can be the set {S, N}
where S stands for Selfish and N stands for Nice. These attitudes reflect the social
preferences of one player over the payoffs of the other player. In addition, players’
social preferences can depend on what they believe the other player’s attitude is and
what other player’s beliefs are. Moreover, as the game unfolds the beliefs of the
players might change depending on what behavior they observe, thus influencing
their social preferences.

To be more precise let R be the real line and R2 the space of all possible payoff
pairs of both players. Let P be some finite set of utility functions u : R2 → R. In our
example we can define P = {uS, uN} where uS(x1, x2) = x1 is self-interested utility
function and uN(x1, x2) = x1 + αx2 is altruistic utility function (0 < α < 1). Fix some
integer T ≥ 1 and define the belief dependent utilities to be a mapping B : ΘT → P . To
illustrate suppose T = 2 and consider B defined by the list:

B(S, S) = uS

B(S, N) = uS

B(N, S) = uS

B(N, N) = uN.

The interpretation is the following. Selfish player who believes that other is also self-
ish (S, S) has utility uS. Selfish player who believes that other is nice (S, N) has also
utility uS (in the end, this is what selfishness is all about). Nice player who believes
that other is nice (N, N) acts altruistically (uN). But if nice player believes other is
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selfish he stops being altruistic and becomes selfish (uS). This example shows how
reciprocity can be modeled in the current framework: the utility of the player with
attitude N changes depending on her beliefs about the attitude of the other player.
Thus, if other player during the game gives her a reason to think that he is selfish she
will adjust her utility accordingly. It is important to notice that this possibility of util-
ity updating is crucial for modeling reciprocity like behaviors. If we define utilities as
independent of beliefs, then we will be in the standard incomplete information setup
where one cannot model situations with preferences dependent on characteristics of
others.

For higher T the construction above can represent more complicated social atti-
tudes of the players. For example, if T = 3, then B would assign different utility to
each triplet (θ1, θ2, θ3) ∈ Θ3. The meaning is that player’s utility depends on what he
believes other player is and what other player believes he is. For example, it is pos-
sible to assume that nice player who thinks the other is nice and thinks other thinks
he is selfish (N, N, S) might have some disutility in comparison to the case (N, N, N).
This is plausible because if others think that the player is selfish they won’t cooperate
in social dilemma environments as much as those who think that the player is nice.
Thus the model can incorporate preferences over beliefs of other player (and beliefs
about beliefs about beliefs...).

2.1 Behavioral Types

In this section we construct behavioral types as infinite hierarchies of beliefs about at-
titudes Θ. Instead of standard recursive formulation we use a definition of belief
hierarchy on an arborescence.7 This is done in order to simplify the future exposi-
tion. However, there is an obvious way to translate the arborescence representation
into a recursive one (see below).

Consider a countably infinite set K of nodes and a partial order P on it with the
following properties:

K1 ∃κ∈K ∀k∈K κPk
There exists an upper bound κ ∈ K

K2 ∀k,n,ℓ∈K kPℓ ∧ nPℓ ⇒ kPn ∨ nPk
The partial order is “tree like”

7Here and further, the term arborescence is used in graph theoretic sense.
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K3 ∀k∈K the set Ck := {n ∈ K\k : kPn ∧ (@ℓ ̸=n,ℓ ̸=k kPℓPn)} of immediate successors
of k is finite and non-empty

These assumptions assure that the pair (K, P) is an arborescence with finite number of
branches coming from each node.

The interpretation of P is the following. Each node k ∈ K is associated with some
player and his attitude in Θ. The immediate successors of k represent the support of
the belief of this player about possible attitudes of the other player. The upper bound
κ shows the original attitude of the player.

To be more specific consider a mapping A : K → Θ that assigns an attitude to
each node in K. Consider some function pk : Ck → (0, 1] such that ∑n∈Ck

pk(n) = 1.
pk represents the probabilities that a player assigns to the attitudes in the order of
beliefs following k. In addition consider a mapping ι : K → {1, 2} that assigns one
of the two players to each node in K with the following property: for any k ∈ K if
ι(k) = i then ι(n) = −i for all n ∈ Ck.8

Before we proceed, an additional assumption on the structure of the arborescence
is in order. The reason for this assumption is two-fold: 1) it plays an important role in
the next section; 2) it is sufficient to represent the arborescence of beliefs in a standard
recursive way with finitely many types (see below). Let

HK := {(κ, k1, k2, ...) ⊂ K : k1 ∈ Cκ ∧ kt ∈ Ckt−1 , t = 2, 3, ...}

be the set of all infinite linear paths on the arborescence.9 Say that a path (κ, k1, k2, ...)
has common attitude belief of level l if, for all t ≥ 1, A(kl+2t) = A(kl) and A(kl+2t+1) =

A(kl+1).

Assumption 1. There is a number L such that all paths in H have common attitude belief of
level no more than L.

Call the tuple ⟨K, P, κ, A, (pk)k∈K, ι⟩ that satisfies Assumption 1 a behavioral type of
player i = ι(κ).

To illustrate consider the example on Figure 1:
Here Θ = {S, N} and the branches represent the arborescence P. k1 is the up-

per bound of P that represents the attitude of the player himself (A(k1) = N). The
next level (k2, k3, k4: immediate successors of k1) represents the beliefs of the player

8Here i = 1, 2 and −i denotes the other player.

9All paths on the arborescence are necessarily infinite by the property K3.
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Figure 1: Arborescence of beliefs.

about the attitude of the other player. For example, with probability pk1(k2) = 0.2
player thinks that the other is nice (A(k2) = N); with probability pk1(k3) = 0.3 player
also thinks that the other is nice (A(k3) = N); with probability pk1(k4) = 0.5 player
thinks that the other is selfish (A(k4) = S). The important distinction between k2 and
k3 comes from the difference in the third order beliefs: beliefs of the other about the
attitudes of the player. In k2 player believes that the other believes he is nice with
probability 0.1 and in k3 player believes that the other believes he is nice with prob-
ability 0.9. Depending on the actions of the other player it is possible that the player
will update his beliefs by throwing away one of the two N-branches.

To see how the arborescence can be related to the recursive formulation of types let
T1 and T2 be some finite sets of attitude types for players 1 and 2. Associate with each
Ti a mapping θi : Ti → Θ. This mapping represents the attitude of each attitude type.
Let bi : Ti → ∆(Tj) represent the belief of attitude types of player i about attitudes of
player j. An arborescence is represented by the tuple ⟨(Ti, θi, bi)i=1,2⟩ if T1 and T2 are
the sets of nodes for each player; θi are derived from function A; and bi are derived
from functions pk. Notice that Assumption 1 guarantees that T1 and T2 are finite.
To see how this is achieved consider a partial representation of the arborescence on
Figure 1:

This construction is given as example. Section 2.5 deals with the explicit relation of
behavioral types to dynamic psychological games (Battigalli and Dufwenberg, 2009).

2.2 Reasoning about Expected Play

Consider a finite two-player extensive form game of perfect information. Let {1, 2} be
the set of players. G denotes the set of nodes with Gi being the set of nodes in which
player i moves. Z ⊂ G is the set of terminal nodes. Let Ag be the set of actions in node
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Figure 2: Recursive representation of the arborescence of beliefs.

g ∈ G \ Z and πi : Z → R the material payoff function of player i. Let ∆(Ag) be the
set of probability distributions over actions Ag in node g. Denote by Si = ×g∈Gi Ag

the set of pure strategies of player i and by S = S1 × S2 the set of all pure strategies.
Let Sδ

i = ×g∈Gi ∆(Ag) be the set of behavioral strategies of player i and Sδ = Sδ
1 × Sδ

2

the set of all behavioral strategies.
We define the reasoning about the game as it happens in the mind of a single

player. Given some behavioral type any player should be capable of calculating how
the game would unfold. There is no need to invoke other player in any way since all
possible data about the beliefs of the other player are contained in the type tree under
consideration.

The first step in understanding how a player reasons about the game is to figure
out what he thinks other player expects. Consider the simplest behavioral type of
player i = ι(κ) with K = {1, 2, ...}; P is a linear order inherited from N; and A : K →
Θ is some function that generates the sequence ε = (θ1, θ2, ...) ∈ Θ∞. Suppose that K
has common attitude belief of level 3. This means that

ε = (θ1, θ2, θ3, θ4, θ3, θ4, ...).

Given this behavioral type player i’s payoffs in the game are different from the
original payoffs defined by the function πi. Player i “perceives” the payoffs through
the social utility u1,T := B(θ1, θ2, ..., θT) = B(ε1,T).10

Definition 1. For any players i, j ∈ {1, 2} say that j thinks i’s payoffs are deter-
mined by u : R2 → R if player j considers i’s payoff in any terminal node z ∈ Z to be
u(πi(z), π−i(z)).

10Notation: εm,n := (θm, θm+1, θm+2, ..., θm+n−1). um,n := B(εm,n).
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Say that i’s payoffs are determined by u : R2 → R if i thinks i’s payoffs are determined
by u : R2 → R.

Thus, player i’s payoffs are determined by u1,T. Analogously, i thinks that other
player’s payoffs (player j) are determined by u2,T = B(ε2,T). However, this is not
everything we can deduce. i also knows that

1. j thinks that i’s payoffs are determined by u3,T

2. j thinks that i thinks that j’s payoffs are determined by u4,T

3. j thinks that i thinks that j thinks that i’s payoffs are determined by u5,T...

Given all this information we would like to construct the reasoning of player i.
First, player i has to understand how player j would reason about the game. Thus,
player i can put himself “in the shoes” of player j and consider the information that
(i believes) player j has. Player j wants to predict how player i would choose in the
game given that i has utility u3,T and thinks that j has utility u4,T. Notice now that
by assumption K has common attitude belief of level 3. This means that at any level
of beliefs after 3 player j thinks that player i has utility u3,T and player i thinks that
player j has utility u4,T. Thus, both players have common belief about their utilities.

To summarize, player i thinks that player j thinks that players have common belief
that their utilities are u3,T and u4,T. Thus, player i can use Backward Induction on the
game tree with the payoffs modified by u3,T and u4,T to arrive at the strategy s3 ∈ Si

that player j expects i to play.
The next thing to notice is that strategy s3 ∈ Si was obtained by backward induc-

tion procedure together with s4 ∈ Sj under the belief that player j has utility u4,T.
However, player i believes that player j’s actual utility is given by u2,T. Therefore,
player i can expect that player j might not want to stick to the strategy s4, but will
rather best respond to s3 in a game where j’s payoffs are transformed by u2,T. So, i
should expect player j to play s2 := BR(s3).11

Overall, player i thinks that player j expects him to play according to s3 and thinks
that player j will play according to s2. Using the same logic we can now conclude
that most likely it will not be rational for player i to follow s3 as his real utility is
u1,T. However, since we have reached the beginning of the belief arborescence the
deviations from s3 will be considered unexpected by player j (at least in the mind of
player i) and so j might then update his beliefs. Such unexpected deviations and

11Strategy s2 is formed by player j best responding in all nodes in which he moves given s3.
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updates will be considered in the next section. For now though we need to formulate
an important principle of expected play.

Principle 1. Players do not update their beliefs if the game unfolds according to their expec-
tations. All players assume this to reason about others and to reason about how others reason
about them.

Remember that the equilibrium path that j expects was reasoned about in the mind
of player i. Using Principle 1 player i can now conclude that j will not update his
beliefs if i sticks to s3. In the same vein, if it is actually in the interest of i to follow s3,
then i will not update his beliefs as long as j follows s2.

Let us look at the slightly more complicated case. Behavioral type of player i =
ι(κ) is the same as above but K has common attitude belief of level M > 3. We use
the same logic as above, only now we should start from the beliefs of level M. In
player i’s mind, at the belief of level M the utilities uM,T and uM+1,T are commonly
believed in by both players. Thus, the player with (believed) attitude θM−1 would
expect that the game unfolds according to the strategies (sM, sM+1) ∈ S determined
by the Backward Induction procedure on the game with payoffs transformed by uM,T

and uM+1,T. Now however, this player, whose believed utility at this level of beliefs
is uM−1,T, will not stick to the strategy sM+1 that he thinks other player expects him
to play, but will rather try to maximize his believed utility uM−1,T by playing best
response to sM. Notice that this behavior is expected by both players since we are talk-
ing about higher levels of beliefs inside both players’ minds (from the perspective of
player i). Thus we can define sM−1 = BR(sM). In similar vein we can go recursively
closer to the beginning of the arborescence and define sk = BR(sk+1). This procedure
stops when we reach node 2 in K: the first occurrence of belief about player j. Thus
player i in whose mind this reasoning takes place thinks that the other player is going
to play the strategy s2 and expects him to play according to s3.

Now we can generalize this reasoning procedure to any behavioral type
⟨K, P, κ, A, (pk)k∈K, ι⟩. For any linear path ε = (κ, k1, k2...) ∈ HK let cb(ε) ∈ ε refer to
a node after which the players have common attitude beliefs. For a linear path with
common attitude belief level l cb(ε) points at the (l + 1)th node on the path.

Let I1 := {n = cb(ε) : ε ∈ HK} be the set of all nodes after which players have
common attitude beliefs. Fix any node ν ∈ I1 and let i = ι(ν) and j = −i. Player
i can find a pair of commonly believed utilities Ui

ν = B(A(ν), A(ℓ), A(ν), A(ℓ), ...)
and U j

ν = B(A(ℓ), A(ν), A(ℓ), A(ν), ...) where ℓ is immediate successor of ν. Thus
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player j in the node which is an immediate predecessor of ν will expect that i will use
Backward Induction to reason about the game transformed by the utilities Ui

ν and
U j

ν. This gives rise to the strategy si
ν of player i expected in node ν. By following this

procedure we can determine strategies si
ν expected in node ν for all ν ∈ I1.12

Now, there is a finite number of predecessors of nodes in I1. This guarantees
that there is a non-empty set of nodes I2 ⊆ K such that any µ ∈ I2 has immediate
successors only from the set I1. For any such µ player j = ι(µ) first finds his utility
at µ. Let Bk,ℓ := {n ∈ K : kPnPℓ} with |Bk,ℓ| = T be a linear path between k and
ℓ of length T. Let ρµ,ℓ = ∏n∈Bµ,ℓ\ℓ pn(Cn ∩ Bµ,ℓ) be the probability of the occurrence

of Bµ,ℓ according to j’s beliefs. Then the expected social utility of player j is U j
µ :=

∑Bµ,ℓ
ρµ,ℓB(A(µ), ..., A(ℓ)).

Now, player j recognizes that player i has expected strategies si
ν in all ν ∈ Cµ.

Player j forms an overall expected strategy si
Cµ

= ⃝ν∈Cµ
(si

ν, pµ(ν)) and finds pure

best response sj
µ = BR(si

Cµ
) to it using his expected social utility U j

µ.13

Going backwards we can now define the set I3 ⊆ K of nodes whose immediate
successors are all in I1 ∪ I2 and find best replies in these nodes using the exactly same
procedure. Eventually after r steps we will arrive at the nodes Cκ whose immediate
predecessor is the upper bound κ. Here the process stops. The procedure generates
the strategies sι(k)

k for all k ∈ I1 ∪ I2 ∪ I3 ∪ ... ∪ Ir that define what players expect to
happen depending on the resolution of uncertainty.

2.3 Belief Updating

There is no requirement on the behavioral types that asks for the consistency of the
beliefs. This implies that player i’s actual utility can be different from what player j
expects it to be. Thus it might be the case that i wants to deviate from the equilibrium
path that j expects to take place. In order to deviate optimally i has to predict what j
will think after a move that is unexpected in j’s mind. In addition, player i naturally
takes into account that player j can perform Bayesian updating of his beliefs as the
game unfolds.

As before we consider the behavioral type ⟨K, P, κ, A, (pk)k∈K, ι⟩ of player i = ι(κ).
We can use the procedure from the previous section to construct the strategies that
constitute the expected play in the game depending on the resolution of uncertainty.

12For simplicity it is assumed that Backward Induction generates unique strategies for all players.

13Symbol ⃝ denotes the mixing of the collection of strategies si
ν into the behavioral strategy with

specified probabilities pµ(ν).
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For player i relevant strategies of player j = −i that i expects j to play are sj
k for all

k ∈ Cκ. Player j at some node k ∈ Cκ expects i to play strategies si
n attached to the

nodes n ∈ Ck on the arborescence. Both players have uncertainty over which of these
strategies will be actually played by the opponent. Consider the example on Figure
3:

...

...

...

...

κ

sk2

sk3

sk1

s 4k

sk5

sk6

k1

k2

k3

k4

k5

k6

j

j

i

i

i

i

i

Figure 3: Expected strategies on the belief arborescence.

Here Cκ = {k1, k2}, Ck1 = {k3, k4} and Ck2 = {k5, k6}. Depending on the resolu-
tion of the uncertainty player i expects j to play according to sj

k1
or sj

k2
and player j at

the node k1 expects player i to play according to either si
k3

or si
k4

etc.
Now suppose that player i moves first in the game in the node g ∈ Gi. Then i

should consider how player j would update the arborescence depending on i’s choice
of the first action. Since at this point player i knows only probabilistically which
behavioral type (starting at different nodes in Cκ) of player j he is facing, player i
should consider updates for all different beliefs of player j. Fix any node k ∈ Cκ (in
our example above, say, k = k1) and suppose i decides to choose some action a ∈ Ag.
Then three things can happen:

1. For player j in k all strategies si
n with n ∈ Ck prescribe that i will take action a

(in the example: both si
k3

and si
k4

say that i chooses a);

2. For player j in k only some strategies si
n with n ∈ Ck prescribe that i will take

action a (in the example, say, only si
k3

says that i chooses a);

3. For player j in k none of the strategies si
n with n ∈ Ck prescribe that i will take

action a (in the example neither si
k3

nor si
k4

say that i chooses a).

12



In the first case since nothing unexpected has happened and no new information
was obtained player j will not update any beliefs (according to the Principle 1). So
the branch of the arborescence following k will stay as it is.

In the second case i’s choosing action a delivers some information. Player j in node
k can do Bayesian updating on his arborescence by cutting all the branches that have
strategies si

n that prescribe something else from action a (in the example, behavioral
types starting from k4). Of course, player j has to redefine the probability function pk

according to the Bayes rule. This procedure gives new updated arborescence which
is consistent with observed choice of a of player i.

The third case is the most interesting of all. Here the choice of action a is inconsis-
tent with anything that player j expects to happen (in the mind of player i). However,
as was mentioned above, player i might still be interested in following such unex-
pected course of action because his true social utility might be different from what
player j thinks it is. In this case player i should predict what the beliefs of j will be
after such an unexpected choice. Or in other words, how would player j rationalize i’s
action a?

In our model unexpected actions can be considered inside the “world” of belief
dependent utilities that exist outside the game. When player j sees some action a
which is not consistent with any of his beliefs he can try to “rationalize” action a by
looking at sequences of reasoning about the behavioral types that could have gen-
erated it. Player j constructs additional behavioral (sub-)types; follows the strategic
reasoning about the expected play given these types; chooses those that prescribe the
choice of action a and update beliefs accordingly.

In general this procedure can be very complicated since the beliefs might get up-
dated later in the game; player j might take into consideration doing something unex-
pected himself etc. That is why we make simplifying assumptions about how player
j rationalizes the unexpected move of player i.

Assumption 2. When player j observes an unexpected move by player i he only tries to
rationalize it by considering linear paths with common attitude belief of level no more than
some fixed number R ≥ 1.

Assumption 2 says that player j is using only the simplest linear arborescences to
rationalize the behavior of player i. In particular, j does not consider the possibility
that him or i can be uncertain about the attitudes somewhere along the arborescence.
This assumption is made mostly to keep the sequence of reasoning finite as the goal

13



of this paper is to come up with the finite algorithm that allows to calculate the optimal
play in the game with belief dependent utilities. If we assumed that player j ratio-
nalizes the unexpected move of i by any general arborescence with uncertainty the
algorithm of finding the optimal play can become infinite.

Now, suppose player i takes an unexpected action a such that in node k ∈ Cκ of the
arborescence player j has to update beliefs according to the case 3. We assume player
j in this situation goes through the following process of updating. He takes the set
of all possible paths with common attitude belief of level d where 1 ≤ d ≤ R for all
d. Then he finds all paths in this set that generate the expected play where player i
chooses a (as described in Section 2.2). And finally he updates his arborescence by
appending all the paths found in the previous step to it.

We make an additional assumption. Player j puts equal probabilities on all the
new discovered paths that rationalize the move of player i. Moreover, to make the
model more flexible we assume that player j does not discard his prior beliefs about
i (those inconsistent with action a) but rather multiplies their probabilities of occur-
rence by some number α ∈ [0, 1]. Thus the probability put on all new paths sums up
to 1 − α.

There might be several reasons to introduce the parameter α into the model. When
α is small or zero we are in the case when player j really starts believing something
very different about player i than what he thought before. However, this creates
the situation when the choices of player i become heavily influenced by the exact
mechanism of the rationalization assumed above which might be undesirable. When
α is big player j does not “trust” that much to his new found rationalizations, but still
puts considerable weight on his previous beliefs. In this situation player i’s decisions
might be not much dependent on the assumption of rationalization mechanism.

Now we are finally ready to specify how the arborescence changes depending on
any choice of player i. Suppose at any node g ∈ Gi in the game player i considers
taking action a ∈ Ag and the current behavioral type is ⟨K, P, κ, A, (pk)k∈K, ι⟩. Player
i first calculates all the strategies sj

k for all k ∈ Cκ and all the strategies si
n for all

n ∈ Ck for all k following the procedure of Section 2.2 which is applied to the subgame
starting at g. These strategies point to the expected plays of player j and i in node
g (depending on the resolution of uncertainty). Then player i constructs the new
updated arborescence after a according to the following steps:

1. Take any node k ∈ Cκ;

2. Update the branch of the arborescence following k using the procedure of the

14



one of the three cases above. The procedure depends on sj
k and si

n for n ∈ Ck;

3. Repeat the two steps above until all nodes in Cκ are updated.

This generates the updated arborescence after action a in node g.

2.4 Reasoning Procedure

In this section we describe the reasoning procedure that player i with behavioral type
⟨K, P, κ, A, (pk)k∈K, ι⟩ uses to find optimal strategy in the game when all belief up-
dates are taken into account. Let the other player be called j and consider any first
move of player i in node gi

0.14 In case player i is not a first mover in the game, he
calculates the expected play given ⟨K, P, κ, A, (pk)k∈K, ι⟩ and Bayesian updates his
beliefs to only those behavioral types of player j that expectedly take the action that
leads to gi

0. Call this updated beliefs ⟨K, P, κ, A, (pk)k∈K, ι⟩gi
0
=: ⟨gi

0⟩ and assign ⟨gi
0⟩

to node gi
0. In case player i is the first mover in the game assign the original not

updated behavioral type to node gi
0.

Now the procedure can be described in the following steps.

1. At gi
0 consider any action a ∈ Agi

0
that leads to node gj

0 of player j.

2. At gj
0 update beliefs of player j in ⟨gi

0⟩. Obtain ⟨gj
0⟩ and assign it to node gj

0. ⟨gj
0⟩

generates some expected play by player j which in general depends on the res-
olution of uncertainty.15 Let σ(gj

0) denote the mixed action of j in gj
0 generated

by expected play.

3. Choose any action a0 in support of σ(gj
0) that leads to some node gi

1 of player i.
Bayesian update ⟨gj

0⟩ to leave only behavioral types of player j that expectedly
choose a0. Obtain ⟨gi

1⟩ and assign it to gi
1.

4. Repeat steps 1 to 3 with node gi
1 and then with nodes gi

2, gi
3, ..., gi

r where gi
r is the

last move of player i. Consider any action ar in Agi
r
. If ar leads to the terminal

node z then assign ⟨z⟩ := ⟨gi
r⟩ to node z and calculate the expected social utility

at z:

Ui
z[⟨z⟩] := ∑

(kℓ)ℓ=1..T−1

p((kℓ)ℓ=1..T−1)B(κ, (kℓ)ℓ=1..T−1)(πi(z), πj(z))

14In case player i is not a first mover in the game he would have several “first” moves.

15Keep in mind that throughout the reasoning procedure the whole game is considered. So, expected
play of player j at gj

0 is found by the expected play procedure on the whole game.
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where the sum goes over all truncated paths (κ, k1, ..., kT−1) of length T on the
belief arborescence; p((kℓ)ℓ=1..T−1) = pκ(k1)∏t=1..T−2 pkt(kt+1) is the probabil-
ity of occurrence of the path; and B(κ, (kℓ)ℓ=1..T−1)(πi(z), πj(z)) is the payoff
transformed with social utility B(κ, (kℓ)ℓ=1..T−1).

If ar leads to some node gj
r of player j that leads to some terminal node z′ then

repeat steps 1 to 3 and obtain ⟨gj
r⟩. In step 3 it is important to Bayesian update

player i’s beliefs as z′ is reached. Assign this updated belief ⟨z′⟩ to z′. After that
calculate the expected social utility Ui

z′ [⟨z
′⟩] using the formula above.

5. Repeat steps 1 to 4 until all possibilities of considering various actions of player i
and j are exhausted.

The reasoning procedure gives the set Z1 ⊆ Z of terminal nodes for which the
social utilities were calculated together with the sets Gi

1 ⊆ Gi and Gj
1 ⊆ Gj of nodes

that lead to terminal nodes in Z1. In addition, for all nodes g ∈ Gj
1 we know the belief

of player i about the choices of player j given by σ(g). The optimal strategy s0 of
player i can then be found as a best response to his belief about the strategy of player
j which consists of σ(g) for all g ∈ Gj

1 with the payoffs of player i given by expected
social utilities calculated in nodes Z1.

2.5 Relation to Psychological Games

In this section we build an epistemic model which describes the game, the beliefs
about the attitudes and the reasoning procedure in the framework of psychological
games of Battigalli and Dufwenberg (2009). First we need to understand how to re-
late any belief arborescence ⟨K, P, κ, A, (pk)k∈K, ι⟩ to the conditional belief hierarchies
defined over the strategies in the game.16 Consider a subset K of the arborescence K
that for each linear path with common attitude belief of level l contains only first l + 1
levels of beliefs. By the definition of common attitude belief the rest of the attitudes
on the linear path are just the repetitions of the last lth and (l + 1)th elements. By
Assumption 1 K is finite. Suppose as well that K does not contain the upper bound
of the arborescence κ. The function ι partitions K into subsets of nodes belonging to
each player in the game. Let T1 and T2 be the sets of nodes for players 1 and 2 so that
K = T1 ∪ T2. These sets represent the types of the two players.

16For the intuition see the example in the end of Section 2.1.
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Let H denote the set of all histories in the game.17 Consider conditional beliefs for
all types in Ti described by the function bi : Ti × H → ∆(Tj). Somewhat abusing nota-
tion we can define bi(ti, h) := pti where pti is the function that defines probabilities on
the nodes of the arborescence following ti (thus, distribution over Tj). For any type
ti,l+1 ∈ Ti without arborescence successors in K (for each linear path with common
attitude belief level l these are the (l + 1)th nodes) let bi(ti,l+1, h) point at the type tj,l

which is its immediate predecessor. Thus, after any history, types tj,l and ti,l+1 have
common certain belief in each other. Notice, in addition, that each type in Ti has the
same beliefs after all possible histories in the game.18

Consider some functions fi : Ti → Si that assign a strategy to each type. The
utility for each player can then be captured by Vi : Z × Ti → R. Since utilities in our
model are defined by T levels of beliefs we can set Vi(z, ti) := Ui

ti
(πi(z), πj(z)) where

Ui
ti

are as determined in the reasoning about expected play in Section 2.2. Notice that
Vi can be viewed as the psychological utility defined in Battigalli and Dufwenberg
(2009). For each type ti the epistemic model recursively generates an infinite hierar-
chy of conditional beliefs about strategies through functions bi and fi. Lastly, given
the utilities Vi we can assign fi(ti) = si

ti
as defined in Section 2.2. The construction

of si
ti

guarantees that each type ti best responds to his beliefs given the utility Vi(·, ti)

after any history in H.
Now we are ready to define the epistemic model that relates the general reasoning

procedure from Section 2.4 to a psychological game. Let ⟨K, P, κ, A, (pk)k∈K, ι⟩ =:
⟨g0⟩ be the beliefs of player i before the game starts. Assign ⟨g0⟩ to the first node g0

in the game. Given this, the reasoning procedure from Section 2.4 generates belief
arborescence ⟨g⟩ for each node g in the subset G1 := Gi

1 ∪ Gj
1 ∪ Z1 ⊆ G. For any

g ∈ G1 let T⟨g⟩
i and T⟨g⟩

j be the types corresponding to ⟨g⟩ together with the functions

(b⟨g⟩
m , f ⟨g⟩

m , V⟨g⟩
m )m=1,2 as defined above.

Let

Ti :=
∪

g∈G1∪{g0}
T⟨g⟩

i ∪ {t0}

Tj :=
∪

g∈G1∪{g0}
T⟨g⟩

j

17Since we are only looking at the games of perfect information, H coincides with the set of nodes
G.

18Type that corresponds to κ will not share this property.

17



be the types of players i and j. For all types excluding t0 define functions (bm, fm,Vm)m=1,2

as (b⟨g⟩
m , f ⟨g⟩

m , V⟨g⟩
m )m=1,2 from corresponding g ∈ G1 ∪ {g0}. It is left to define the be-

liefs, the strategies and the utilities for the special type t0 which represents player i
at the upper bound κ of the arborescence. For each node g ∈ G1 ∪ {g0} there cor-
responds a history hg ∈ H. Again slightly abusing notation let bi(t0, hg) := p⟨g⟩

κ .
Here p⟨g⟩

κ is the function defining probabilities over the immediate successors of κ on
the arborescence ⟨g⟩. Thus, at history hg type t0 holds beliefs only about player j’s
types from arborescence ⟨g⟩. Notice that type t0 holds different beliefs at any history
corresponding to the nodes in G1 ∪ {g0}. These beliefs reflect player i’s expectations
about how beliefs after each move are updated. For the nodes ḡ ∈ G\G1 that are
not allowed by any strategy f ⟨g⟩

j for g ∈ G1 ∪ {g0} set bi(t0, hḡ) := bi(t0, hg0)).
19 For

the nodes Z1 ⊆ G1 let Vi(z, t0) := Ui
z[⟨z⟩] as defined in Section 2.4. For the rest of

the terminal nodes z′ ∈ Z\Z1 define Vi(z′, t0) := Ui
κ(πi(z′), πj(z′)) where Ui

κ is the
expected social utility of player i at the upper bound κ of the arborescence ⟨g0⟩ (see
Section 2.2). Finally, let fi(t0) = s0 where s0 is the best response of player i given all
the belief updates as described in the end of Section 2.4.

To summarize, the epistemic model (Tm, bm, fm,Vm)m=1,2 represents the reasoning
procedure that was described in the previous sections. Notice that by construction
of the beliefs, strategies and utilities each type of either player best responds to his
beliefs after any history. Thus, we have obtained an epistemic model that rationalizes
the reasoning procedure.

3 Examples

In the examples below we use the following definitions of belief dependent utilities
unless specified otherwise: Θ = {S, N}; P = {uS, uN} where uS(x1, x2) = x1 is
“selfish” utility function and uN(x1, x2) = x1 − α max{x2 − x1, 0}− β max{x1 − x2, 0}

19Since these histories are not allowed by any strategy of player j that player i can possibly believe
in, his beliefs at these nodes are irrelevant.
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is “nice” utility function;20 T = 2 and

B(S, S) = uS

B(S, N) = uS

B(N, S) = uS

B(N, N) = uN.

3.1 Sequential Prisoner’s Dilemma

One of the main advantages of the Battigalli and Dufwenberg (2009) framework is
the possibility to update beliefs as the game unfolds. We would like to provide some
evidence that in the experimental lab subjects do indeed update their beliefs in a con-
sistent way which influences their behavior. We use sequential Prisoner’s Dilemma
and its slight modification in Figure 4. The game on the right is different from the
usual PD in only one payoff of player 1 marked in red. The important difference
between the two games though is that in the modified Prisoner’s Dilemma player 1
with utility uS has dominant action L.

1

1

5

0

0

5

4

4

P2 P2

P1

L1 R2

L

R1 L2

R

4.5

1

5

0

0

5

4

4

P2 P2

P1

L1 R2

L

R1 L2

R

Figure 4: Sequential Prisoner’s Dilemma (left) and its modification (right).

We are interested in the inferences that player 2 does in the two games upon ob-
serving action R of player 1. Consider the belief arborescence of player 2 on Figure 5.
Here player 2 has attitude S and believes with probabilities 1

4 that player 1 can be one
of the four shown behavioral types.

Assume that uN(4, 4) = 4 > uN(5, 0) and uN(1, 1) = 1 > uN(0, 5). Then upon
observing action R of player 1 player 2 will update his beliefs. In the modified version

20Here inequality aversion is not a crucial assumption. It is possible to assume uN to be altruistic
utility with the same results.
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...
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...S S N N N

0.25

0.25

0.25

0.25

Figure 5: Belief arborescence of player 2 in sequential Prisoner’s Dilemma.

of sequential PD action R of player 1 can mean only one thing: player 1 has behavioral
type N − N − N − N − ... with corresponding utility uN and expects player 2 to go
R2 (Backward Induction outcome given common belief that both players have utility
uN). In other three cases player 1 has utility uS and thus should prefer the dominant
action L. Therefore, player 2 in modified PD updates his beliefs after R to S− N − N −
N − N − .... Therefore, the only way for player 2 to rationalize action R in modified
PD is to believe that player 1 holds belief N − N − N − N − ....

In the standard PD the situation is different. Here player 1 can have selfish prefer-
ences and still go R as long as he believes that player 2 will go R2. This happens for
example if player 1 believes S − N − N − N − N − ..., which means that he is himself
selfish, but thinks that player 2 believes that both players commonly believe in each
other having attitude N. Therefore, after seeing R player 2 updates his beliefs to the
following:

...
N N N N N

S
...

S N N N N

0.5

0.5

Notice that now player 2 does not have a sure belief about what utility player 1
actually has.

In the experiment subjects played two games one after the other. In treatment 1
the first game was standard sequential PD followed by a Trust game. In treatment 2
the first game was modified PD followed by the same Trust game (see Figure 6).

Subjects who played as player 1 in PD then became Responders in the Trust game.
Subjects who played as player 2 in PD became Proposers in the Trust game. In the
beginning of the experiment subjects did not know that after PD they will face Trust
game. They only knew that they will play several games. After the first game subjects
were rematched. Before playing the Trust game the Proposers received the informa-
tion about the choices of the Responders in the first game. For example, a Proposer in
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Figure 6: Experimental design.

Trust game could have been told: “Now you are playing Game 2 with a person who
chose R in the previous game.”21

The graph on Figure 7 shows the amount proposed in the Trust game depending
on the treatment and the information provided to the Proposers.

In a qualitative accordance with the prediction of the model proposals are twice
higher after observing that the Responder played R in a modified PD than in other
three conditions. In particular, observing the action that the Responder chose in the
standard PD does not influence the amount proposed. In our framework the expla-
nation is that action R in modified PD reveals the type and beliefs of the Responder
whereas in standard PD it does not.

It is worthwhile to look at this result in the light of other models that propose
explanations for cooperative behavior in games. Levine (1998) considers standard
incomplete information framework in which players have private information about
their social utility function (say, uS or uN) and share common prior about the distribu-
tion of the types in the population. According to this model in modified PD players
with utility uN would go R if there are sufficiently many people with utility uN in
the population (so that the probability of them going R2 is high enough). Assum-
ing this, only separating equilibrium exists in modified PD. Following the same logic
standard PD should have only pooling equilibrium in which all types go R. Given

21The rules of the Trust game (Game 2) were described in the instructions beforehand.

21



0
5

1
0

1
5

2
0

Sequential PD Sequential PD with 4.5

saw L

Mean proposal in the Trust Game in two treatments. In “Sequential PD” saw R corresponds to
beliefs SNN and NNN. In with 4.5 only.“Sequential PD ” saw R corresponds to NNN

saw Rsaw L saw R

Figure 7: Proposals in the Trust game after seeing the action of the Responder in PD
and modified PD.

these observations it is in principle conceivable that players update their prior after
observing the action of the Responder before the Trust game and thus make higher
proposals after seeing R in modified PD. However, these considerations are beyond
the framework of the incomplete information games and are not explicitly modeled.
In our setup players are able to reason about the meaning of information they receive
and incorporate it into their future decisions.

Another two models that tackle the same issue are Dufwenberg and Kirchsteiger
(2004) and Falk and Fischbacher (2006). Both consider reciprocal behavior in dynamic
games using the approach that allows for some form of belief updating. In particular,
after a player chooses some action in the game the opponent calculates how “kind”
that action was towards him by comparing the payoffs that can still happen in the
future and the payoffs that are no longer available after the current action. These
models are capable of predicting cooperative outcomes in the PD, however they can
say nothing about the effect that the revelation of information between the games has
on the behavior in the Trust game. This is a consequence of the absence of uncertainty
about the opponents type in these models.
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3.2 Repeated Sequential Prisoner’s Dilemma

Many experimental studies show that people cooperate in finitely repeated social
dilemmas (e.g. Clark and Sefton (2001)).22 This results are usually hard to explain in
standard game theoretic settings given simple recursive logic that, as long as selfish
players are involved, obviously profitable defection in the last period of the game es-
sentially makes finitely repeated social dilemma one period shorter thus asking for
defection in the period one to last etc. We propose a model in which selfish play-
ers maintain cooperation in finitely repeated sequential Prisoner’s Dilemma. The
construction crucially depends on two assumptions: 1) players update their beliefs
about the behavioral types of other player as the game unfolds; 2) players have mis-
matched beliefs. In particular, consider two players who both have the following belief
arborescence before the game starts:

S − N − N − N − N − N − N − ...

This means that both players have selfish utility uS, but believe that the other player
maintains common belief that both players have utility uN.

Consider finitely repeated stage game on the left of Figure 4. We assume that
uN(4, 4) = 4 > uN(5, 0) and uN(1, 1) = 1 > uN(0, 5). Under common belief that both
players have utility uN Backward Induction generates the unique strategies: player 1
goes R in all periods; player 2 goes (L1, R2) in all periods. In finitely repeated game
with D periods this gives the payoff of 4D to each player. As long as both players play
the aforementioned strategies no belief updating is taking place. However, players
might have the incentive to deviate. The important thing to notice is that after any
deviation players will update their beliefs about the beliefs of the opponent.

If player 1 deviates to L he knows that player 2 should then think that player
1’s utility is actually uS as prescribed by the updated belief arborescence that now
includes a variety of linear paths with combinations of N’s and S’s excluding N −
N − N − N − ....23 Given this updated belief player 1 as a player whose actual utility
is uS will prefer to go L in all remaining periods expecting player 2 to choose (L1, L2).
This gives player 1 a payoff of 1 in each period after deviation which is strictly less
than without deviation. For player 2 the situation is similar. After moving L2 instead

22Cooperation normally decreases over time.

23Here we assume a model with α = 0 (see Section 2.3). This means that when unexpected action
happens players rationalize it with some beliefs and forget their original belief. It is interesting to
check whether high α can generate the “return to cooperation” behavior as observed in the lab.
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of R2 player 2 updates his beliefs about the beliefs of player 1 who now thinks that
player 2’s utility is uS. Player 2 gets one time payoff of 5 and then receives 1 in all
consecutive periods as after the deviation player 1 starts to optimally go L. Deviation
is not profitable for player 2 if

5 + (D − 1) < 4D ⇒ D >
4
3

.

Thus for any repeated game with more than 1 period we should expect to observe
strategies R in all periods for player 1 and (L1, R2) in all periods but the last and
(L1, L2) in the last period for player 2. Player 2 does want to defect in the last period
as he still has selfish utility uS.
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