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Dynamic Regret Avoidance†

By Michele Fioretti, Alexander Vostroknutov, and Giorgio Coricelli*

In a stock market experiment, we examine how regret avoidance influ-
ences the decision to sell an asset while its price changes over time. 
Participants know beforehand whether they will observe the future 
prices after they sell the asset or not. Without future prices, participants 
are affected only by regret about previously observed high prices (past 
regret), but when future prices are available, they also avoid regret
about expected  after-sale high prices (future regret). Moreover, as the
relative sizes of past and future regret change, participants dynami-
cally switch between them. This demonstrates how multiple reference 
points dynamically influence sales. (JEL C91, G12, G41)

Regret is a negative emotion, associated with an action or inaction, that is expe-
rienced when one wishes that another choice would have been made. Regret 

avoidance was found to be an important factor in many empirical studies on topics 
ranging from heart disease prevention in health economics (Boeri et al. 2013) to
auctions ( Filiz-Ozbay and Ozbay 2007; Hayashi and Yoshimoto 2016), financial
markets (Fogel and Berry 2006; Frydman, Hartzmark, and Solomon 2018; Frydman
and Camerer 2016), portfolio and pension scheme selection (Muermann, Mitchell,
and  Volkman 2006; Hazan and  Kale 2015), and currency hedging (Michenaud
and Solnik 2008).

Apart from the empirical applications, regret avoidance has been studied both the-
oretically (Bell 1982; Loomes and Sugden 1982; Skiadas 1997; Sarver 2008; Hayashi
2008; Bikhchandani and Segal 2014; Leung and Halpern 2015; Qin 2015; Buturak 
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and  Evren 2017) and experimentally (Coricelli et  al. 2005; Camille et  al. 2004; 
Zeelenberg 1999; Bleichrodt, Cillo, and Diecidue 2010; Strack and Viefers 2021). 
Even though many aspects of regret avoidance were considered in these studies, 
their focus is mainly on static problems where a single decision is made that can be 
affected by the information about possible counterfactual outcomes. Such problems 
are important since many real-life decisions, like buying a house or a pension plan, fit 
into this setting. Nevertheless, many interesting phenomena that involve regret have 
dynamic nature, the stock market being one important example. These situations are 
characterized by the presence of the time dimension: a decision or decisions should 
be made given some past information and/or expectations of the future, both of which 
change as time unfolds. Regret, in this case, also becomes a dynamic variable that is 
reevaluated in each time period. More importantly, there emerge the concepts of past 
and future regret. A choice is influenced by past regret when an action taken today 
increases the chances of bringing about a desirable outcome that was observed in 
the past. Future regret involves taking actions that prevent missing the opportunity of 
achieving a desirable expected future outcome. For example, in financial markets, the 
decision to sell an asset might depend on the highest observed price in the past (past 
regret), but traders might also think about the hypothetical counterfactual situation 
in which they sell an asset today and regret doing it later because the price went up 
(future regret) and adjust their behavior to avoid such circumstances.

In this paper, we investigate how past and future regret influence choices in a 
controlled experimental setting similar to a stock market. Our main interest is to 
understand how different elements of the dynamic situation interact and influence 
behavior: in our case, the decision to sell an asset. In particular, we are interested 
in the following questions: (i) How strongly does the avoidance of past and future 
regret influence the choice to sell? (ii) Is there an interaction between past and future 
regret? Does one become stronger or weaker in the presence of the other?

In our experiment, reminiscent of those reported in Oprea, Friedman, 
and Anderson (2009); Oprea (2014); and Strack and Viefers (2021), participants 
take part in a series of “stock markets”: they observe how the price changes in real 
time and choose when to sell an asset that they own. Participants make choices 
in two types of markets. In some markets, they do not see the future price of the 
asset after they made their selling decision. In other markets, they do see the future 
price. Participants are always informed beforehand about the type of the market they 
are in. This setup allows us to analyze past and future regret and their interaction. 
In both conditions, past regret can potentially influence participants’ decisions to 
sell the asset since the price history is observable. At the same time, we are able 
to see whether access to the prices after selling has an effect on decision-making 
(future regret). More importantly, our design makes it possible to use structural 
modeling and estimate the parameters of a utility specification that includes past 
and future regret components in a dynamic discrete choice setting (e.g., Rust 1987; 
Hotz and Miller 1993).

We find that participants are influenced by the observable past prices and do 
behave differently depending on whether they know that the future prices will or 
will not be observed after they sell the asset. Our evidence that participants keep 
the asset to make the effect of past regret smaller or absent confirms the results of 
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the recent studies that focus on past regret only (Gneezy 2005; Strack and Viefers 
2021). We go further and consider the possibility that agents keep the asset longer 
when they know that they can observe future prices and expect them to be high, as 
compared to the case when they know they will not observe future prices. Our data 
show that information about the availability of the prices after selling indeed has 
this expected effect on the decision to sell. More importantly, when the participants 
know that they will not observe future prices, their choices to sell are not affected 
by future regret avoidance. In addition, we find that individual risk preferences also 
play a role in the selling decisions. However, their effect on choice is secondary to 
regret avoidance and does not influence the estimates of the regret parameters.

Estimates of the parameters of a  regret-averse utility function obtained from a 
dynamic discrete choice model suggest that the effects of the past and future regret 
are not simply additive. We demonstrate that there is an interaction between past 
and future regret in the utility, which would not be possible to identify with simple 
regression analysis. Past and future regret are not complements but rather lessen the 
effects of one another. This happens because, while both regret components of the 
utility function are negative, the interaction term offsets the effect of the smaller 
one. We call this phenomenon a substitution effect between past and future regret. 
At each point in time, participants’ selling choices are not influenced by both types 
of regret at once but are rather guided by the one that is stronger. This also implies 
that depending on the circumstances, the behavior on the market can be either past 
or future oriented.

Our findings demonstrate that individuals incorporate past and future regret into 
the utility function in dynamic settings and that they are able to extract and update 
complex counterfactual information about the changing environment and integrate 
it into the decision process.

I. The Experiment

The data were collected in a behavioral experiment in which participants were 
presented with a series of mini stock markets. Each participant observed the graph 
of a market price as it gradually changed in time in 0.8-second intervals and had to 
decide when to sell an “asset” (see Figure 1). For the first 15 periods, participants 
could only observe the price.1 Then, in period 15, they were forced to buy an asset 
at the current price. The point of entry was marked with a vertical red line. The 
market price kept changing until participants decided to sell the asset (marked with 
a blue line on the graph). In case no selling decision was made, the market contin-
ued until its closure in period 50, at which point participants were forced to sell. 
The profit was equal to the selling price minus the entry price (price in period 15) 
so that participants could actually lose money (each participant received a € 10 fee 
that covered her in the case of a loss).

1 We included 15 initial  nonchoice periods following Frydman and  Camerer (2016), who also included 
 nonchoice periods in a similar design to allow participants to experience the price variation within a market before 
making any decisions. Not including these periods can lead to a situation where participants stay in the market 
simply because they want to learn more about the price and not because of regret avoidance.
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In each market, the price followed a stochastic mean reverting process defined 
by   y t+1   = α  y t   + (1 − α)θ , where  α = 0.6 ,   y t    is the price in period  t , and  θ  is 
an identically and independently distributed random variable (uniform between € 0 
and € 10). Participants were informed about the process that generated the price 
and made selling decisions in six training markets without payment, which allowed 
them to see the examples of the price dynamics and get used to the interface (the 
market prices used in the experiment are graphed in online Appendix A.5).

Each participant made selling decisions, which could be of two types, in 48 dif-
ferent markets. In some markets (No Info condition, left picture in Figure 1), par-
ticipants knew from the beginning that after they sell the asset, they will not see the 
future price. In the Info condition (right picture in Figure 1), participants knew from 
the beginning that after selling the asset, they will observe the evolution of the price 
until the market closure in period 50. This information was shown in the  upper-left 
corner of the graph from period 1 onward (INFO DOPO means “info after”). The 
markets were presented in a random order that was generated independently for 
each participant. Half of the markets were presented in the No Info condition and 
half in the Info condition. The sequence of conditions was also randomized. After 
the markets, the participants were presented with an incentivized  Holt-Laury task 
(Holt and Laury 2002) and a questionnaire. Overall, 154 participants took part in the 
experiment in 9 sessions. The average earnings in the main task were € 11.46. The 
experiment was programmed in  z-Tree (Fischbacher 2007). The data and the anal-
ysis can be found at the data repository  openicpsr-130441 (http://openicpsr.org/). 
Further details of the design can be found in online Appendix A.

II. Evidence of Regret Avoidance

In this section, we look at some summary statistics in order to compare the sell-
ing behavior to the no-regret benchmark, and we report a regression analysis that 
shows the effects of past and future regret. This analysis can provide only crude 
estimates of how the current market state influences the choices to sell, since it is 

Figure 1. Screenshots of Two Markets

Notes: Above the graph, participants could see the entry price (valore di entrata), current price (valore corrente), 
selling price (valore di uscita), and profit (guadagno), which was green for positive profit and red for negative profit. 
In the No Info condition, the future price was not shown (left picture). In the Info condition, the price evolution 
was shown after the selling decision (right picture). The sentence at the bottom of the left picture says “Please wait 
until the market is closed.”

http://openicpsr.org/
https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180260&iName=master.img-000.jpg&w=176&h=107
https://pubs.aeaweb.org/action/showImage?doi=10.1257/mic.20180260&iName=master.img-001.jpg&w=176&h=107
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static in nature and does not take into account the dynamic structure of the markets. 
Nevertheless, it does demonstrate how the participants react to past and expected 
future prices. We start with a comparison of the behavior of our participants with the 
optimal choice of a  risk-neutral  regret-free agent who should sell the asset whenever 
the price rises above a certain threshold that depends on the number of periods left 
in the market. The dynamic stopping problem that describes optimal choices is for-
mulated in online Appendix B.

We focus on the class of CRRA utilities  U(y) = ( y   1−ρ  − 1)/(1 − ρ) , where  y  
is a selling price, and numerically evaluate the optimal policy prescribed by the 
dynamic program from online Appendix B. Figure 2 illustrates the optimal policies 
for five values of the risk parameter  ρ  (both  risk loving and  risk averse).2 It is opti-
mal for the agent to sell the asset if the price is above the shown thresholds. The 
figure demonstrates that  risk-loving agents (with  ρ < 0 ) optimally sell the asset at 
higher prices than  risk-averse agents ( ρ > 0 ). Notice, however, that the effect of 
risk preferences on the optimal threshold is rather small. The threshold is virtually 
the same in period 16 for  risk-loving and  risk-averse agents, and in period 49, the 
threshold changes from € 4.7 ( ρ = 0.7 ) to € 5.3 ( ρ = − 1 ). This implies that we 
should not expect any strong behavioral effects to stem from the heterogeneity in 
risk preferences.

In order to compare the behavior of participants with this benchmark, we con-
sider selling decisions at relatively high prices, since participants’ choices coincide 
with the model prediction to keep the asset when the prices are low. Figure 3 sum-
marizes selling decisions in situations when the participants had a choice to sell 

2 We consider the values of  ρ  in the interval  [− 1, 0.7]  following Strack and Viefers (2021), who found that the 
estimates of CRRA risk coefficients for their subjects lie in this interval.

Figure 2. Optimal Selling Price Thresholds

Notes: The optimal selling price threshold for different risk preferences. CRRA utility without regret is shown.
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and the price was above the optimal selling threshold (of a  risk-neutral agent). If 
our participants chose in accordance with the predictions of the no-regret utility 
model, they would have sold the asset in all these cases. We observe that even at 
the tenth decile of the price distribution, there is a large deviation from the optimal 
strategy: participants do not sell the asset in 34 percent of the cases. When we look 
at the prices below € 6.3 (first decile), we see that the asset is kept in 80 percent 
of the cases when it actually should have been sold, a huge discrepancy with the 
predictions of the standard model. Still, the deviations from the standard model 
can, in principle, be noise artifacts. To falsify this idea, we run a logit and an OLS 
regression where the dependent variable is the decision to keep the asset and the 
independent variable is the current price (conditional on being above the optimal 
threshold). We find a significant negative trend in the probability to keep the asset 
(logit coefficient − 0.71, OLS coefficient − 0.16). This shows that the differences in 
proportions are not random and are higher for lower prices. Finally, to get an idea 
about the  between-subject differences in behavior, we plot on Figure C4 in online 
Appendix C the distribution of participants by their proportion of missed optimal 
sales calculated for each participant separately. We see that there are very few par-
ticipants who are close to the proportion of zero predicted by the  no-regret model. 
Only around 5 percent of participants keep the asset when it should be sold in less 
than 30 percent of cases; everyone else keeps the asset in more than 30 percent of 
cases. This demonstrates that very few participants, if any, are behaving in accor-
dance with the  no-regret model.

Figure 3. The Proportion of Times the Participants Decided to Keep the Asset

Notes: The participants keep the asset despite the current price being greater than the optimal selling threshold of 
the  risk-neutral  regret-free agent. Observations are grouped by deciles. The solid line at zero shows the proportion 
of missed sales expected from the rational no-regret agent. The spikes are  ± 1  SE.
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This evidence suggests that the participants mostly keep the asset in situations 
when the standard model predicts that it should be sold. One potential explanation 
of this effect is loss aversion. Suppose that participants suffer some additional fixed 
disutility from having negative profit (selling the asset at a price lower than the entry 
price). This can, in principle, make them keep the asset longer in order to make a 
positive profit. However, in our data, the correlation between the entry and selling 
prices is very small (Spearman’s  ρ = 0.058 ,  p < 0.001 ). Moreover, in Figure 3, 
the average proportion of missed sales over all price deciles is 0.58. If we only look 
at the data points where participants would have made positive profit by selling, this 
proportion drops to 0.48, which is only 10 percent less. This means that when partic-
ipants should sell the asset according to the  no-regret model and can make positive 
profit, they still do not do it in 48 percent of the cases. All this evidence suggests 
that loss aversion is not a good candidate for explaining the data. Moreover, it does 
not predict any difference between the Info and No Info conditions, which we report 
below.

We hypothesize that the observed behavior is driven by the desire to minimize 
regret, which can arise in our dynamic setting due to two kinds of (counterfactual) 
comparisons between the outcome of a current choice (i.e., realized price) and past 
or future peaks. One possibility is that the decision-maker can take all observable 
past prices and form an expectation using this information about how high the price 
can go. In this case, she avoids what we call past regret by keeping the asset if the 
past information suggests that the price can increase further. We propose that the 
decision-maker focus on the highest price in the past, or past peak, to form this 
expectation.3 The past peak is calculated as the highest price achieved up to the cur-
rent period.4 Another possibility is that the decision-maker anticipates regret from 
knowing that a higher price can be attained in case  postsale prices are observable 
(the Info condition). So the decision-maker avoids future regret when she keeps 
the asset longer due to expectations that the price can increase after she sells it. 
Importantly, unlike the past prices that are always observable, future regret should 
only be relevant if the decision-maker knows that the future prices will be revealed, 
because there is no possibility to experience regret due to higher future prices other-
wise (the No Info condition). Similarly to the past regret, we assume that the deci-
sion-maker uses the future expected highest price (future peak) as a reference point 
in this case. The future peak is computed as the expectation over the maximum price 
that can be achieved in all future paths (see Section III for details).

To test the idea that the past peak influences the decision to sell, we examine the 
selling rates. Overall, participants sell the asset in 51 percent of the situations when 

3 Gneezy (2005) shows in a setting similar to ours that the past peak is a more plausible reference point than 
the purchase price.

4 Under the standard definition, regret is elicited by the counterfactual comparison between the outcome of 
the chosen and the outcome of a foregone option. This suggests that the definition of past regret should exclude 
the first 15  nonchoice periods in the experiment. However, in our specific setting related to the stock market, the 
decision-maker can form better price expectations when using all observable past prices regardless of whether they 
are before or after period 15. Thus, providing price information for the first 15 periods allows the decision-maker 
to anticipate regret based on past information starting already from her first choice in period 16. In our setting, 
extending the standard definition of regret to include the first 15  nonchoice periods is crucial to identify how past 
regret affects sales.
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the price goes above the past peak (i.e., it is a new peak). If we look only at the 
cases when the price is above the optimal threshold of the  risk-neutral agent with-
out regret, then the selling rate becomes 71 percent at the new peak and 35 percent 
when the price is not the new peak. This provides evidence that the past peak has 
an influence on the decisions to sell even when the standard model unambiguously 
predicts only sales. To see the importance of the past peak for the decision to sell, 
consider Figure 4, panel A. We group the new past peaks by how high they are 
and find that when the new past peak is above € 8, selling happens in 71 percent of 
the cases; in the range  [7, 8] , 63 percent; in the range  [6, 7] , 30 percent; and in the 
range  [5, 6] , 2.6 percent. Notice that the percentages of selling when the price is 
in the same intervals but is not a new peak are 46 percent, 32 percent, 14 percent, 
and 3.4 percent, respectively—much lower values. Figure C5 in online Appendix C 
shows the same graph restricted to observations above the optimal threshold in the 
standard model. The influence of the past peak is unchanged. Thus, the difference 
in sale rates cannot be explained by the standard theory; we need to consider past 
peaks in order to explain our data.

To show the influence of the future peak on the decisions to sell, we notice that 
the future expected highest price is decreasing in time, since early in the market, 
there are plenty of opportunities for the price to rise, whereas when there are only 
few periods left, the price cannot go much higher than its current level. Therefore, 
future regret, which is proportional to the future peak, should be highest in early 
periods and decrease later on. If our participants are sensitive to future regret, we 
should observe a difference in selling behavior between the No Info and Info condi-
tions in early periods. The two curves on Figure 4, panel B represent the cumulative 
ratio of the number of sales in the two conditions that are within € 0.5 and € 1 of the 
past peak. For each time period, this ratio exceeds 1, which implies that there are 
more decisions to sell in the No Info condition than in the Info condition. This effect 
is especially evident in the early periods. In the late periods, the number of selling 

Figure 4. Evidence of Regret Avoidance

Notes: Panel A: The percentage of sales when the price reaches a new peak (dark gray) and when the price is below 
the current past peak (light gray). The error bars are  ± 1  SE. Panel B: The ratio of the number of sales up to period  t  
in the No Info condition to the number of sales up to period  t  in the Info condition. The dashed line includes sales 
within € 0.5 of the past peak and the solid line within € 1 of the past peak.
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decisions becomes approximately the same.5 This provides first evidence that par-
ticipants sell less often early on in the Info condition because of the possibility of 
future regret, which makes them keep the asset longer in order to reduce the disutil-
ity associated with it. Moreover, the ratio is higher for the sales that are € 0.5 closer 
to the past peak than for the sales that are € 1 closer. This is the case since in the No 
Info condition, being closer to the past peak implies higher probability of selling, 
whereas in the Info condition, the past peak is less salient due to the possibility of 
observing high prices after selling.

To investigate the influence of a larger set of variables on the decisions to sell, we 
run a series of logit regressions, shown in Table 1, with the dependent variable equal 
to 1 if a participant keeps the asset and 0 if she sells it. Notice that these regressions 
can provide only a simplified picture of the relationships in our data since they do 
not account for the time dependencies due to the Markovian nature of the price 

5 Figure C6 in online Appendix C shows that the ratios starting from period 33 oscillate in the vicinity of 1.

Table 1—Random Effects logit Regression of the Choice to Keep the Asset

Pr[choice = keep] I II III

Price −0.497 −0.319 −0.326
(0.146) (0.133) (0.134)

Price2 −0.102 −0.125 −0.125
(0.013) (0.012) (0.012)

Time −0.088 −0.082 −0.082
(0.004) (0.004) (0.004)

Future expected price 1.423 1.401 1.381
(0.230) (0.190) (0.188)

Past peak 0.506 0.600
(0.035) (0.045)

Future expected peak 0.309 0.210
(0.071) (0.084)

Past peak × info −0.209
(0.065)

Future expected peak × info 0.183
(0.066)

Info 0.129
(0.675)

Constant 4.525 −1.955 −1.746
(1.161) (0.966) (1.099)

Observations 112,137 112,137 112,137

Notes: Choice is 0 at the time the participant sells the asset and 1 otherwise. Observations 
are for all periods in all markets for all participants in which they made a choice (periods 16 
to 49). Errors are clustered by participant and robust. The variable price refers to the current 
price; time is the period counter; future expected price refers to the expected price in period 
50 given the current price, the number of periods left, and the price generating Markov pro-
cess; past peak is the highest price observed before current period; future expected peak is the 
highest expected price given the current price and the number of periods left; and info is 1 if 
the condition is info and 0 otherwise. The descriptions of all variables can be found in online 
Appendix D.
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evolution and the optimizing behavior of the participants. The main variables of 
interest are the market condition (info), the past peak, the future expected peak,
and their interactions.6 We see that both past and future peaks significantly influ-
ence the probability to keep the asset (columns II and III): the higher they are, the
longer the participants hold the asset. More importantly, in the Info condition, we 
see that the influence of the past peak decreases, and the influence of the future 
expected peak increases (interactions with the variable info, column III). This is
consistent with our hypothesis that the possibility to observe prices after selling 
the asset makes participants more focused on the future. All these findings are in 
line with what the standard regret theories (e.g., Bell 1982; Loomes and Sugden
1982) would suggest in our setting. Namely, higher past and future expected peaks
decrease the utility from selling the asset today, which results in the participants’ 
holding on to it longer. This happens because these peaks suggest where the price 
can potentially be in the future if the asset is kept, thus creating regret associated 
with selling it today.7

We further investigate the decision to keep the asset by introducing more vari-
ables. The regressions reported in Table E2 in online Appendix E show a small but 
significant effect of the risk preferences, as estimated by the Holt and Laury task 
(Holt and Laury 2002), on the probability to keep the asset (variable hl). As risk
aversion increases, the probability of keeping the asset goes down, which is consis-
tent with the predictions of the no-regret model (online Appendix B). Nevertheless,
risk preferences alone cannot account for the dependency of the selling choices 
on the market condition, the past price history, or future expected prices since all 
the interactions of the corresponding variables with hl are insignificant (regressions
in columns V and VI). Finally, the regressions in Table E3 in online Appendix E
show a significant effect of the market condition (Info versus No Info) in early
periods. The probability of keeping the asset is higher in the Info condition (variable
info  ×  early, columns I and II), which is in line with future regret avoidance, as we
explained above (Figure 4, panel B).

To summarize, we find some evidence that the decisions to sell are influenced 
by past regret avoidance (Figure 4, panel A and Table 1). We also find that in the
Info condition, future peaks become more and past peaks less salient for the deci-
sion to keep the asset (Table 1), which is consistent with future regret avoidance.
Finally, participants keep the asset longer in the early periods of the Info condi-
tion when future regret is the strongest (Figure 4, panel A and Table E3 in online
Appendix  E), suggesting an interaction between the two types of regret. These
results, however, should be treated with caution. While the presence of past regret 
avoidance is unambiguous, given that past peaks are always observed by partici-
pants and are in a sense “tangible,” we cannot reliably conclude from the regression 

6 See online Appendix D for the description of the variables used in the regressions and online Appendix F for 
the computation of highest expected future price.

7 We also make several observations about the control variables. The probability of selling increases with time 
(coefficient on time is negative). The negative coefficient on price      2   suggests  nonlinearity in response to price
changes and increase in probability of selling as price increases. The positive coefficient on the future expected 
price—which is the expected price in period 50 given the current price, the number of periods left, and the price 
generating Markov process—shows that the selling behavior is modulated by future considerations. In particular, a 
higher expected price in the future makes participants keep the asset longer.
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analysis that participants exhibit future regret avoidance, since the significant effect 
of the variable future expected peak can have other sources. Regressions do not 
account for the dynamic structure of the optimization problem and essentially just 
reveal correlations between the selling events and the corresponding states of the 
market. Therefore, the effect of the future expected peak can come from the attempts 
of participants to act upon some kind of future expectations, which may not imply 
that they try to avoid future regret. The same can be said about the possible interac-
tion between past and future regret, the presence of which our data suggest: it can 
simply be an artifact of optimization with some considerations of the future. In order 
to resolve this issue, in the following sections, we formulate and provide estimates 
of the structural model, which allows us to explicitly separate the role of past and 
future regret from that of future expectations while taking into account the dynamic 
nature of the task.

III. Regret-Averse Utility Function

We start with defining the  regret-averse utility function that is further used in 
the structural model. We hypothesize that the highest price in the past, or past 
peak, defined as   s p,t   =  max τ≤t    y τ   , is a reference point that our participants use 
to measure how well they are doing (as shown in Figure 4, panel A). This is a 
dynamic variable that changes when the price gets above the observed highest 
peak.8 We conjecture that given the current price, which is always less than or 
equal to   s p,t   , the higher the past peak, the more negative the feeling of past regret 
should be. This implies that if an agent is influenced by past regret, her utility 
should be negatively proportional to   s p,t   . This dependency, in its turn, influences 
the decision to keep the asset. This modeling choice is motivated by recent work 
(e.g., Gneezy 2005; Strack and Viefers 2021) that leverages on the saliency of 
the highest past price as the key measure of regret, allowing us to disregard other 
functions of past prices that could be used as reference points for past regret. 
Highest past prices were found to be important in trading decisions in financial 
markets. For example, in their analysis of the decision to exercise stock options, 
Heath, Huddart, and Lang (1999) found that exercising activity doubles when the 
current price attains the maximum level over the past year.

If participants are aware that they will observe prices even after selling the asset, 
they can anticipate a situation where the future price will exceed the selling price, 
which would lead to negative emotions that we call future regret. In this case, par-
ticipants’ decisions to sell should be sensitive to the future expected highest price, 
which is a dynamic variable that depends on the current price and the number of 
periods left before the market closure. When this information is not available, the 
future regret should not play any role in the selling decisions since participants do 
not anticipate any negative emotions from observing high prices after selling.9 The 

8 Notice that without regret, the optimal policy is to sell the asset whenever the price rises above the threshold 
in Figure 2 that depends only on the number of periods left. Thus, in the no-regret case, the selling decision is 
independent of any reference points.

9 A similar negative response was found in Cooke, Meyvis, and Schwartz (2001), where reported satisfaction 
scores were negatively correlated with the prices after the sale decision.
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expectation of the highest future peak at time  t , denoted by   s f,t   = E[ max t<τ≤T    y τ   |  y t  ] , 
is a function of the price today and the number of periods left until the market 
closure. The variable   s f,t    is the expectation of the maximum price achievable in  T − t  
periods given the current price   y t    over all possible price paths. An agent sensitive to 
future regret should have a utility function that is negatively proportional to   s f,t   , but 
only when the agent knows that the future prices will be observed.

As an additional observation, notice that given a fixed price   y t   ,   s f,t    is decreasing 
in  t  because of the presence of a terminal period (see online Appendix F for the 
details). Conversely,   s p,t    is a weakly increasing function of time, since it is defined as 
a maximum of the past prices. This suggests that future regret should be dominant in 
early periods, while past regret should be in late periods. In order to make the utility 
specification more flexible and to be able to infer whether the current reference point 
is the highest price observed in the past, the expected highest price in the future, or a 
combination of these two variables, we add an interaction term to the utility function 
and specify it as follows:

(1)  u ( y t  ,  s p,t  ,  s f,t  )  = π  y t   − ω  s p,t   − α  s f,t   − λ  s p,t    s f,t   .

The interaction term can incorporate many types of dependencies between past and 
future regret. For example, if  λ > 0 , then past and future regret are complements, 
one reinforces the other. If  λ < 0 , then the two types of regret are substitutes, which 
means that the presence of one type makes the influence of the other one weaker.10

The consumption part of the utility is given by  π  y t   , with  π ≥ 0 .11 The disutility 
from past regret is captured by the second term with parameter  ω , and the disutility 
from future regret by the third term with parameter  α . The parameter  λ  determines 
how past and future regret interact. The utility function in (1) offers a simple way to 
test our predictions: when  ω = 0 , the decision of the agent does not depend on the 
past peak or on the future expected peak when  α = λ = 0 . This means that the 
less the agent cares about past/future regret, the less his selling price is influenced 
by the past/future peak.12

Our hypotheses stated above imply that  ω  should be positive. Note that  α  and  λ  
should be zero in the No Info condition, since future prices are not available (though 
participants can, in principle, calculate   s f,t    in this case and be influenced by it). In the 
Info condition,  α  should be positive, while the value of  λ  in the Info condition can 

10 Alternative specifications of the interaction term are possible. However, we use a parsimonious specification   
s p,t    s f,t    because it allows identification of  λ  and can tell whether past and future regret are complements or substitutes.

11 The results in the previous section show a limited role for risk aversion, so for the analysis reported below, 
we assume risk neutrality, though we also estimate the model assuming CRRA preferences. When allowing for 
risk preferences (online Appendix  I.2), we define the future regret as the disutility at the future highest peak, 
 − αU( s f,t   ; ρ) , where  U( ⋅ ; ρ)  is a CRRA utility with risk aversion coefficient  ρ . An alternative approach would be to 
define it as the expectation of a regret function over possible draws of the future price, e.g.,  E[U( max t<τ≤T  ( y τ  )) |  y t  ] . 
This, however, would entail significant estimation difficulties. Our definition is in line with the idea that participants 
have a “target income” at any point in time (see, e.g., Camerer et al. 1997; Crawford and Meng 2011).

12 It should also be acknowledged that this is not a standard regret aversion function that has one reference point 
and two parameters like in Bell (1982) and Loomes and Sugden (1982). Since we focus on two reference points 
(past and future regret), such a function would complicate both the estimation and the interpretation of the results 
across conditions. Also, we opted for the linear utility, as the  nonlinearity of classic utilities with regret would be 
infeasible to estimate in our setting due to the already complex calculations involved in computing   s f,t   .
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be anything depending on the nature of interaction between past and future regret. 
Thus, estimating the three regret parameters in the two conditions will allow us to 
test our ideas about the role of past and future regret and, in addition, will make it 
possible to tell how the reference point changes in time depending on the relative 
sizes of past and future regret.

Our definition of the future regret is a major departure from the analysis in Strack 
and Viefers (2021), who focus only on the regret over past decisions. The novelty 
of our approach is that we consider a decision-maker who takes into account both 
the endogenously changing past reference point (the past peak) and the exogenously 
given information about the possibility of future regret, which shares features with 
the classical static regret. Thus, our decision-maker is affected by both the past price 
shocks, as in Strack and Viefers (2021), and by the knowledge of the availability 
of price information after selling the asset, which comes at a cost since the deci-
sion-maker may be future regret averse. We model these two forces with separate 
reference points, one in the past and one in the future, and investigate empirically 
whether they subdue or reinforce each other.

IV. A Structural Model of Dynamic Regret Avoidance

To assess the role of dynamic regret avoidance in decision-making, we assume 
that participants follow an optimal policy when choosing to sell the asset given 
some parameters of the  regret-averse utility function. We estimate a dynamic dis-
crete choice model (e.g., Rust 1987, 1994) where the value from selling the asset is 
directly compared with the continuation value: participants sell when the former is 
larger than the latter. This section sketches the model that will be taken to the data 
in Section V. Online Appendix H provides the full derivation.

In our experiment, the evolution of the price of the asset is Markovian, as the 
price in period  t + 1  depends only on the price in period  t . So participants decide 
to sell the asset if the current outcome is greater than the discounted value of the 
future outcomes, which can be represented by a value function. In each period  t , 
one of two choices is made: to sell the asset (  d t   = 0 ) or to keep it (  d t   = 1 ). As in 
Section III,  u( x t  )  denotes the  regret-averse utility from selling the asset when the 
current state is   x t   = ( y t  ,  s p,t  ,  s f,t  ) ∈  . A decision-maker’s intertemporal expected 
utility is

  E [  ∑ 
t=1

  
T

     β   t−1  (1 −  d t  ) u ( x t  )  +  ε  t  
 d t   ]  ,

where the expectation is taken over the values of the independent variables   x t    and  
β ∈ (0, 1)  is the discounting factor. Similarly to most of the binary static discrete 
choice models, the value of each choice includes additive iid extreme value type 1 
errors (  ε t   = ( ε  t  

0 ,  ε  t  
1  ) ), which account for unobserved variables that may affect the 

decisions. Notice that the decision-maker receives actual utility in only one period 
when the asset is sold. However, the common structure of the discrete choice models 
assumes intertemporal optimization with random shocks to the utility, which neces-
sitates the formulation of the expected utility above.
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The dynamic environment can be summarized using a value function   v  t  
 d t    , which 

represents the time discounted utility obtained by the decision-maker who follows 
the optimal policy at  t :

(2)

  v  t  
 d t    ( x t  )  =  

{
 
u ( x t  ) ,

  
if  d t   = 0 (sell);

       
β E    [ E ε   [max {u ( x t+1  )  +  ε  t+1  

0  ,  v  t+1  
1   ( x t+1  )  +  ε  t+1  

1  } ]  |  x t  ] ,
  

if  d t   = 1 (keep).
   

This equation summarizes the decision problem of the agent: given current state   x t   , 
she will keep the asset if this provides more utility than selling it, i.e., if   v  t  

1 ( x t  ) 
>  v  t  

0 ( x t  ) . The payoff from keeping the asset corresponds to the discounted value 
from behaving optimally in the next period. Thus,   v   1   includes the expectation over 
the state variables in the next period,   x t+1   , and the errors,   ε t+1   .

The large size of the state space    and the large number of periods make a solu-
tion by backward induction (the classic method when periods are finite) a daunting 
task. To estimate (2), we rely on the fact that the distribution of the observed choices 
uniquely identifies the utility function (Hotz and  Miller 1993), which allows us 
to transform (2) into a set of equations that can be estimated by the least squares 
method (e.g., Pesendorfer and  Schmidt-Dengler 2008).

Intuitively, the agent will choose to keep or sell the asset depending on which 
action provides the higher value conditional on any given realization of the state 
variable   x t   . Therefore, we expect this relation to be reflected in the probability 
of choosing each action conditional on the state and period. For this case, Hotz 
and Miller (1993) show the existence of an invertible mapping between the value 
functions and the related probability of choosing each action given   x t   . This proba-
bility is known as the conditional choice probability (CCP) and is denoted by   p  t  

1 ( x t  ) 
= Pr( d t   = 1 |  x t  )  for the probability of continuing and   p  t  

0 ( x t  ) = Pr( d t   = 0 |  x t  )  for 
the probability of selling at  t . Since the CCP can be estimated directly from the data, 
we treat   p  t  

 d t   ( x t  )  as a known object for all  t  and   x t   . The identification procedure uses 
the CCP—together with the properties of the logit distribution—to express equa-
tion (2) in terms of data.

The logit assumption gives an analytical solution for the probability of choosing 
each action. For example, the probability of selling is   p  t  

0 ( x t  ) = 1 / (1 + exp( v  t  
1 ( x t  ) − 

 v  t  
0 ( x t  ))) , which depends on the difference between the values of keeping and selling 

in (2). This difference is

(3)    v  t  
1  ( x t  )  −  v  t  

0  ( x t  )  

   = − u ( x t  )  + β E    [ E ε   [max { v  t  
0  ( x t+1  )  +  ε  t+1  

0  ,  v  t  
1  ( x t+1  )  +  ε  t+1  

1  } ]  |  x t  ]  .

This equation can be simplified further by exploiting the properties of the logistic 
error structure, as in Hotz and Miller (1993). First, let’s consider the LHS of (3). 
We can rewrite   v  t  

1 ( x t  ) −  v  t  
0 ( x t  )  as a function of   p  t  

0 ( x t  )  using their relationship shown 
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above. Denote this function by  ϕ(  p  t  
0 ( x t  )) ≡ ln(1 −  p  t  

0 ( x t  )) − ln(  p  t  
0 ( x t  )) .13 Thus, 

the difference between the value of keeping and selling the asset can be thought of in 
terms of changes in the probability of selling the asset. This means that the  left-hand 
side of (3) is a known function of the data, the CCP. Next, the inner expectation and 
the max operator in the  right-hand side of (3) can also be simplified using the prop-
erties of the logit errors. Online Appendix H shows all the steps of this derivation. 
As a result, (3) becomes

(4)  ϕ ( p  t  
0  ( x t  ) )  = − u ( x t  )  + β  ∑ 

 x t+1  ∈
  

 

    (u ( x t+1  )  − ln ( p  t+1  
0   ( x t+1  ) ) )  f ( x t+1   |  x t  )  ,

where  f ( x t+1   |  x t  )  is the known transition probability between consecutive periods 
in    estimated from the data, and the summation substitutes the integration with 
respect to   x t+1    as we discretize the state space before estimation.14

Several observations about the equation (4) should be made. First, it summarizes 
intertemporal choices by only comparing the gain from selling in the next period 
(i.e.,   ∑  x t+1  ∈  

 
    u( x t+1  ) f ( x t+1   |  x t  ) ) with the expected (log) probability of selling in the 

next period given by  − ∑  x t+1  ∈  
 
    ln(  p  t+1  

0  ( x t+1  )) f ( x t+1   |  x t  ) . This last term is important 
because it incorporates the continuation value and can be thought of as the utility 
from waiting for a better price. In fact, this expectation is proportional to the contin-
uation value at  t + 1  through the definition of the CCP.15 Hence, we know that the 
 right-hand side of (4) increases when agents expect high returns from keeping the 
asset in the following periods. Because the  left-hand side of (4) corresponds to the 
difference between the value functions from keeping and selling the asset, a greater 
continuation value implies that the agent is more likely to keep the asset in period  t .

Second, given the same continuation value, if  ω > 0 , the model predicts that 
the agent will be less likely to sell in period  t  if the distance between the past peak 
and the current price is larger than the expectation of the same difference in the 
following period. To see this, notice that the  right-hand side of (4) increases if the 
difference between the past peak and the current price goes up, which in turn should 
increase the  left-hand side or decrease the probability of selling. This reasoning can 
also be applied to the future expected peak. In the Info condition, the agent will 
be less likely to sell the asset in period  t  if   s f,t   > E[ s f,t+1  ]  and  α > 0 , other things 
equal. This follows again from the increase in the  right-hand side of (4) when the 
expectation of the future peak changes marginally.

We have constructed a simple  two-step estimator. The first step involves recover-
ing the CCP and the transition matrix directly from the data. In the second step, these 
objects are plugged into (3). This gives us the objective function (equation (4)) used 

13 The CCP of selling the asset is   p  t+1  
0  ( x t  ) = 1 / (1 + exp( v  t  

1 ( x t  ) −  v  t  
0 ( x t  ))) . This can be transformed into 

  v  t  
1 ( x t  ) −  v  t  

0 ( x t  ) = ln(1 −  p  t  
0 ( x t  )) − ln(  p  t  

0 ( x t  )) .
14 The discretization of the state space is necessary to estimate the model. For our experiment, this is not a 

problem; the participants face a discrete state space anyway, as   y t    was rounded to cents. The discretization is imple-
mented according to the approach proposed by Tauchen (1986) to approximate a vector autoregression model with 
a finite state Markov chain. All variables (current price, past peak, and future peak) are discretized on the same 
support in [0.59, 9.32]. The distance between the 400 bins is € 0.02. This method is described in detail in online 
Appendix G.

15 From the derivations above, we have  − ln(  p  t+1  
0  ( x t+1  )) = ln(1 + exp( v  t+1  

1  ( x t+1  ) −  v  t+1  
0  ( x t+1  ))) , which is 

approximately equal to   v  t+1  
1  ( x t+1  ) −  v  t+1  

0  ( x t+1  ) .
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to estimate a parameterized version of the utility of selling the asset  u( x t  ) , which 
includes  regret-averse components for the two conditions (Info and No Info). In 
conclusion, the procedure just described relies on the common logit assumption in 
the binary choice literature, the presence of a terminating action (selling the asset), 
and the Markovian nature of the changes in the state variables.

V. Estimation of the Structural Model

We now turn to the estimation of the dynamic discrete choice model in Section IV. 
However, before proceeding to the estimation of (3), we analyze how the CCP dif-
fers in the two conditions, as this can further elucidate the mechanisms at play.

A. Estimation of the Conditional Choice Probabilities

The conditional probability of selling the asset (or continuing) at period  t  is com-
puted directly from the data. We exclude periods 15 and 50 since no one sold the 
asset in the former (first choice period) and the choice is forced in the latter (last 
period). Participants sell their asset in different periods, resulting in a highly unbal-
anced dataset. The CCPs are constructed using a logit estimator of the choices of the 
active participants in each period  t ∈ {16, …, 49}  as a function of the realized state 
variables. It is important to stress that there are two policy functions to be estimated 
for each period since the experiment has two conditions. The CCP for either the No 
Info or Info condition in period  t  can be represented as follows:

(5)  Pr { d t   = 0 |  x t  }  = Λ ( β 1t    y t   +  β 2t    s p,t   +  β 3t    s f,t  ) , ∀ t ∈  {16, …, 49}  ,

where  Λ( ⋅ )  stands for the logistic distribution. In principle, several other valid spec-
ifications can be used. However, since the sample size shrinks as participants sell 
their assets over time, adding additional covariates undermines the identification of 
the parameters.16

Figure 5 shows the projections of the  time-averaged fitted CCP in the No Info 
condition.17 Specifically, each line represents the estimate of the probability of sell-
ing that results from averaging the fitted values of 34 logit regressions (1 for each 
time period).18 For prices below € 5, the probability of selling is the highest when 
the past peak is € 3, is lower when the past peak is € 5, and is close to 0 for past 
peaks € 7 and € 8. This means that when prices are low, the participants are strongly 
influenced by the size of the past peak and wait for the price to become closer to it. 
For the past peaks € 7 and € 8, which are very common in our data, the probability of 

16 Adding square and interaction terms creates a large multicollinearity problem, eventually impairing the iden-
tification of the   β nt    coefficients. In fact, the singular value decomposition of the matrices of covariates in (5) show 
that including these terms makes it  ill conditioned in most periods. Also, clustering at subject level does not affect 
the results.

17 For the purpose of making this graph illustrative, the CCPs in Figure 5 were calculated without the future 
regret term, or assuming   β 3t   = 0  in (5).

18 Thus, the CCPs in Figures 5 and 6 are shown just for illustration. They are out-of-sample estimates that do 
not take into account the influence of the current price on the past peak (i.e., the current price cannot be larger than 
the highest observed price).
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selling increases rapidly when the price approaches € 7. This demonstrates that the 
past peak indeed serves as a reference point.

Figure 6 illustrates similar projections of the CCP in the Info condition. For fixed 
value of future regret, the relationship between the curves with past regret equal 
to € 5 and € 7 is the same as in Figure 5. However, the effect of past regret is much 
smaller in this case. We conjecture that this is due to the presence of the future regret 
term that dominates the past regret. In what follows, we show that there is a substi-
tution effect between past and future regret that can explain this pattern.

B. Estimation of the Parameters

In order to causally connect regret avoidance and decisions to sell in our experi-
ment, we estimate (4) by  nonlinear least squares procedure (Bajari et al. 2016).

We proceed with the estimation of a parametric version of (4) where the  per-period 
utility from selling is defined as

(6)  u ( y t  ,  s p,t  ,  s f,t  )  = π  y t   −  1 No info   ( ω NI    s p,t   +  α NI    s f,t   +  λ NI    s p,t    s f,t  )  

  −  1 Info   ( ω I    s p,t   +  α I    s f,t   +  λ I    s p,t    s f,t  )  .

Figure 5. Probability of Selling the Asset in the No Info Condition

Notes: The effect of the past peak on the probability of selling the asset in the No Info condition. The CCP is com-
puted by taking the average of the fitted values for all periods  t ∈ {16, …, 49} . This figure is for illustrative purpose 
only and is based on a state space discretized over 200 bins.
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This is the  regret-averse utility discussed in Section  III. Specifically, we assume 
that participants take into account both past and future regret in both the Info and 
No Info conditions but do it in potentially different ways. The estimation of the six 
regret parameters denoted by the subscripts “NI” for No Info and “I” for Info condi-
tions should provide support to our hypotheses.19

Table  2 shows the estimated parameters of the utility function. As we have 
hypothesized, the estimates of the past regret parameters    ω ˆ   NI    and    ω ˆ   I    are positive 
and significant for all discount factor specifications. This demonstrates that our 
participants respond to past regret in both conditions. We also observe that    α ˆ   I    is 
positive and significant, which implies that participants have future regret in the 
markets where they know that future prices will be available. Importantly, the coef-
ficients    α ˆ   NI    and    λ ˆ   NI    are not significant in all models. Thus, we conclude that the 
future expected peak plays no role in the decisions to sell when the participants 
know that they will not observe the future prices after selling. The observation that 
future expected peak only enters selling decisions when future prices are observable 
is crucial since it refutes any theory that incorporates   s f,t    in the utility function but 
is not based on emotional reactions related to observability of future prices. Any 
such theory would predict no difference between the Info and No Info conditions 
since participants can easily use   s f,t    —which is essentially an expectation—for their 

19 The indicator functions  1  distinguish the utility derived in one condition from the other. The parameters  π,  ω NI  , 
 α NI  ,  λ NI  ,  ω I  ,  α I  ,  λ I    are free to vary and indicate how strongly participants’ decisions are affected by regret.

Figure 6. Probability of Selling the Asset in the Info Condition

Notes: The effect of the past peak and the expected future peak in the Info condition. The CCP is computed by tak-
ing the average of the fitted values from (5) for all periods  t ∈ {16, …, 49} . This figure is for illustrative purpose 
only and is based on a state space discretized over 200 bins.
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decisions in both conditions. Thus, our findings provide a strong and direct evidence 
of past and future regret avoidance.

Next, we turn to the interpretation of the coefficient    λ ˆ   I    on the interaction of past 
and future regret in the Info condition. Notice that it is negative and significant. This 
confirms the presence of a substitution effect between the two types of regret. The 
size of    λ ˆ   I    allows us to conclude that participants are only affected by one type of 
regret at a time. In particular, they pay attention only to the largest of the two: when 
either past or future regret is large and the other is small, the interaction term offsets 
the effect of the small term (see Figure 7 in Section VI). Moreover, the presence of 
the interaction term implies that participants switch their focus between past and 
future regret dynamically within each market depending on which peak is larger. 
This suggests that people can be surprisingly flexible at being past or future oriented 
when it comes to selling decisions in dynamic settings.20

Finally, we verify that our results cannot be explained by loss aversion. A loss 
occurs if the asset is sold at a price below the purchase price in period 15. Before, in 
Section II, we have provided arguments that loss aversion cannot explain our data. 
Here, we go further and explicitly estimate a structural model with utility that has a 
loss aversion term in it. The estimation is reported in online Appendix I.3. The loss 
aversion term is not significant. This also supports our results in Table 2: the esti-
mates of the past and future regret stay unchanged. We conclude that loss aversion 
plays no role in the decision to sell the asset.

20 In online Appendix I.1, we also estimate a model in which we assume that the decision-maker does not antic-
ipate future regret in the No Info condition as well as several other robustness analyses (online Appendix I.2). The 
estimates confirm the conclusions from Table 2.

Table 2—The Estimation of (4) in Periods 16 to 48 for Different Values of β

Parameter  β = 99.65%  β = 99.60%  β = 99.55% 

  π ˆ    1.789  1.788 1.787
(0.014) (0.014) (0.014)

   ω ˆ   NI   1.432 1.555 1.643
(0.462) (0.413) (0.376)

   ω ˆ   I     2.609        2.585        2.562      
(0.473) (0.424) (0.385)

   α ˆ   NI    0.134  0.229  0.296 
(0.341) (0.303) (0.274)

   α ˆ   I     1.761        1.719        1.679      
(0.348) (0.309) (0.281)

   λ ˆ   NI     − 0.046   − 0.059  − 0.068 
(0.051) (0.046) (0.043)

   λ ˆ   I    −  0.265       −  0.260       −  0.256      
(0.053) (0.048) (0.044)

Observations 111,613 111,613 111,613

Notes: Standard errors are in parentheses. The CCP is computed using the formula in (5) for 
both conditions.
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VI. Discussion

We find a strong imprint of past regret on the decisions of our participants in 
an optimal stopping experiment. Our main findings, however, lie in the domain of 
future regret and its dynamic interaction with past regret, and they can be summa-
rized as follows. First, the participants are able to contemplate the counterfactual 
situation in which they sell the asset today and later regret it when the price goes up. 
Moreover, they take this possibility into account by trying to sell the asset at a price 
closer to the future expected maximum. Second, the participants are not always 
influenced by future regret. They take it into account only when they know that the 
information about future prices will be available after they sell the asset. Third, past 
and future regret do not work independently. They interact by offsetting each other, 
which leads to only the strongest being reflected in the decisions.

When comparing the selling behavior in the No Info and Info conditions, it is 
important to note that the conditions differ only in the information provided after the 
choice was made. Before the choice, the exactly identical information is conveyed 
to the decision-maker. Therefore, in principle, it is possible to choose in the same 
way in both conditions. Namely, nothing stops the participants from calculating the 
expected future maximum value and acting upon it even if the future prices are not 
revealed. However, as the estimation of the structural model demonstrates, this is 
not the case, and the same participant who avoids future regret in the Info condition 
chooses to ignore it in the No Info condition. This is particularly surprising given 
that making optimal selling decisions in our dynamic environment involves calculat-
ing future expected prices even without deliberation on future regret. This exposes 
the complexity of intertemporal choice by the  regret-averse participants and, partic-
ularly, its sensitivity to the context and information available in the future.21

The estimation of the structural model shows a significant interaction effect 
between past and future regret in the Info condition. Specifically, this interaction 
is negative and thus works to counteract the effect of the smaller regret term (past 
or future). This mechanism, though static in nature, creates a compelling dynamic 
effect: the impact of the past and the future on the probability of selling changes 
in time as the past and future regret terms change in relative size. Figure 7 pro-
vides a graphical intuition. In the left graph before period 18, the past regret term, 
which is dominated by the future regret term, is offset by the interaction. After this 
period, the roles of the past and future regret terms switch, and the future regret 
is now offset by the interaction term. Overall, the interaction term in both graphs 
is close to the minimum of the past and future regret terms that makes the higher 
regret term exert most of the influence on the decision to sell. The participants try 
to minimize the distance from a global highest peak or  max{ s p,t  ,  s f,t  } , thus treating 
the past and the (expected) future in the same way. It should be emphasized that 
this result has emerged endogenously without introducing the maximum of the 
two peaks as the definition of the regret function. This also explains the different 

21 The ability to contemplate hypothetical counterfactual scenarios is also experimentally investigated by 
Esponda and Vespa (2014) in a different environment with multiple agents with strategic interactions and sequen-
tial decisions.
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rates at which participants in the No Info and Info conditions sell when the current 
price is in the vicinity of the past peak, as documented in panel B of Figure 4. In 
the early periods, future regret is a reference point for the participants in the Info 
condition but not the participants in the No Info condition. As time goes by, the 
saliency of past regret increases, eventually dominating the future regret term (see 
Figure 7).

In our experiment, this effect is detected within subjects, which means that ori-
entation toward the past or the future can change rapidly depending on the circum-
stances. More importantly, this implies that the behavior on financial markets can 
potentially be influenced by seemingly unrelated events that nevertheless refocus 
the attention of the investors on the past or expected future developments (e.g., 
Klibanoff, Lamont, and Wizman 1998; Bordalo, Gennaioli, and Shleifer 2018). For 
example, in our setting, the value of the expected future maximum depends on the 
number of periods left before the market closure: for any fixed current price, the 
closer the end, the lower the expected future maximum. Therefore, sudden news that 
the closure will happen earlier should decrease future regret and thus make investors 
more wary of the past. This can potentially lead to two outcomes: if the past peak 
was high and was dominating the expected future peak, then nothing should change; 
however, if the past peak was low and was dominated by the expected future peak, 
then early closure can lead to a selling spree since the dominating regret term—in 
this case, future regret—has decreased. A similar pattern to the dynamic substitution 
we elicited in our study was also found across New York taxi drivers in their labor 
supply decisions (Crawford and Meng 2011). While drivers have flexible schedules 
and can stop driving after any trip, their choices seem to target either income or 

Figure 7. Dynamics of Past and Future Regret

Notes: Examples of the dynamics of past and future regret in two selected markets in the Info condition for the peri-
ods  t ∈ {16, …, 48} . The curves show the terms of the estimated regret function (i.e., past regret =    ω ˆ   I    s p,t   , future 
regret =    α ˆ   I    s f,t   , and interaction term =  |  λ ˆ   I  |  s f,t    s p,t   ) in column 4 of Tabel I4 in online Appendix I. The solid vertical 
line shows the moment at which the participants switch the focus from future regret to past regret.
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hours worked. In particular, it is the furthest (from the current state) among the two 
objectives that is the dominant reference point.

The findings of our study add to the existing literature on the multiplicity of ref-
erence points (e.g., Kahneman 1992; Baucells, Weber, and Welfens 2011) and their 
endogenous formation (e.g., Kőszegi and Rabin 2006, 2007; Gill and Prowse 2012) 
by fully spelling out their mechanism and estimating their relationship in a dynamic 
setting. We conclude that ex post information shapes agents’ actions in our dynamic 
setting and that agents make no attempt to integrate competing/different reference 
points but rather dynamically select the most relevant one.

Our results imply another interesting behavioral effect that is concerned with 
the potential choice between observing and not observing the future price after 
selling the asset. In particular, the estimates of the utility parameters suggest that 
having no information should be preferable to having it (   ω ˆ   NI   <   α ˆ   I   <   ω ˆ   I   ). So it 
is not inconceivable that the investors would be willing to pay for not being able 
to observe the future prices of the asset (e.g., Bell 1983; Caplin and Leahy 2001). 
This can have consequences for policies directed at the regulation of stock market 
trading such as short selling (selling to subsequently repurchase an asset), which 
could be welfare improving over bans (Beber and Pagano 2013). Nevertheless, we 
would like to stress that the relative size of past and future regret and their inter-
action is an empirical question that requires case-by-case analysis. Moreover, we 
believe that our approach could be used to investigate the role of regret avoidance 
in  real-life dynamic situations.

VII. Conclusion

In an experimental task that resembles a stock market, we study how past and 
future regret avoidance influences selling decisions. We use a dynamic discrete 
choice model to evaluate the parameters of a utility function that incorporates 
regret avoidance preferences and find that both past and future regret play an 
important role in the choices to sell. When participants in the experiment know 
that after they sell the asset, they will no longer see the evolution of the price, 
their decisions to sell are strongly influenced by past regret avoidance. Namely, 
participants keep the asset longer in order to sell at a price close to the highest 
past price observed. When participants are aware that after they sell the asset, they 
will continue to observe the price on the market, their choices to sell change: now 
future regret avoidance also becomes important. Participants take into account 
the anticipated future regret that they would experience if the price of the asset 
increased after they sold it, and they try to minimize this effect.

Moreover, we find that past and future regret avoidance do not just influence the 
decisions in a simple additive way. They interact with each other. In particular, par-
ticipants pay more attention to the type of regret that is more prominent: if the past 
highest peak looms higher than the expected future peak, then past regret avoidance 
enters the decision to sell. If the anticipated regret in the future is larger than the 
potential past regret, then future regret avoidance becomes important. This substitu-
tion effect was not previously mentioned in the literature and may be of particular 
interest to policymakers.



92 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS FEBRUARY 2022

REFERENCES

Bajari, Patrick, Chenghuan Sean Chu, Denis Nekipelov, and Minjung Park. 2016. “Identification and 
Semiparametric Estimation of a Finite Horizon Dynamic Discrete Choice Model with a Terminat-
ing Action.” https://escholarship.org/content/qt9c35w8sq/qt9c35w8sq.pdf?t=ojx49q.

Baucells, Manel, Martin Weber, and Frank Welfens. 2011. “Reference-Point Formation and Updat-
ing.” Management Science 57 (3): 506–19.

Beber, Alessandro, and Marco Pagano. 2013. “Short-Selling Bans around the World: Evidence from 
the 2007–09 Crisis.” Journal of Finance 68 (1): 343–81.

Bell, David E. 1982. “Regret in Decision-Making under Uncertainty.” Operations Research 30 (5): 
 961–81.

Bell, David E. 1983. “Risk Premiums for Decision Regret.” Management Science 29 (10): 1156–66.
Bikhchandani, Sushil, and Uzi Segal. 2014. “Transitive Regret over Statistically Independent Lotter-

ies.” Journal of Economic Theory 152: 237–48.
Bleichrodt, Han, Alessandra Cillo, and Enrico Diecidue. 2010. “A Quantitative Measurement of Regret 

Theory.” Management Science 56 (1): 161–75.
Boeri, Marco, Alberto Longo, José M. Grisolía, W. George Hutchinson, and Frank Kee. 2013. “The 

Role of Regret Minimisation in Lifestyle Choices Affecting the Risk of Coronary Heart Disease.” 
Journal of Health Economics 32 (1): 253–260.

Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer. 2018. “Diagnostic Expectations and Credit 
Cycles.” Journal of Finance 73 (1): 199–277.

Buturak, Gökhan, and Özgür Evren. 2017. “Choice Overload and Asymmetric Regret.” Theoretical 
Economics 12 (3): 1029–56.

Camerer, Colin, Linda Babcock, George Loewenstein, and Richard Thaler. 1997. “Labor Supply of 
New York City Cabdrivers: One Day at a Time.” Quarterly Journal of Economics 112 (2): 407–41.

Camille, Nathalie, Giorgio Coricelli, Jerome Sallet, Pascale Pradat-Diehl, Jean-René Duhamel, and 
Angela Sirigu. 2004. “The Involvement of the Orbitofrontal Cortex in the Experience of Regret.” 
Science 304 (5674): 1167–70.

Caplin, Andrew, and John Leahy. 2001. “Psychological Expected Utility Theory and Anticipatory 
Feelings.” Quarterly Journal of Economics 116 (1): 55–79.

Cooke, Alan D.J., Tom Meyvis, and Alan Schwartz. 2001. “Avoiding Future Regret in Purchase-Timing 
Decisions.” Journal of Consumer Research 27 (4): 447–59.

Coricelli, Giorgio, Hugo D. Critchley, Mateus Joffily, John P. O’Doherty, Angela Sirigu, and Raymond 
J. Dolan. 2005. “Regret and Its Avoidance: A Neuroimaging Study of Choice Behavior.” Nature 
Neuroscience 8 (9): 1255–62.

Crawford, Vincent P., and Juanjuan Meng. 2011. “New York City Cab Drivers’ Labor Supply Revis-
ited: Reference-Dependent Preferences with Rational Expectations Targets for Hours and Income.” 
American Economic Review 101 (5): 1912–32.

Esponda, Ignacio, and Emanuel Vespa. 2014. “Hypothetical Thinking and Information Extraction in 
the Laboratory.” American Economic Journal: Microeconomics 6 (4): 180–202.

Filiz-Ozbay, Emel, and Erkut Y. Ozbay. 2007. “Auctions with Anticipated Regret: Theory and Experi-
ment.” American Economic Review 97 (4): 1407–18.

Fioretti, Michele, Alexander Vostroknutov, and Giorgio Coricelli. 2022. “Replication data for: Dynamic 
Regret Avoidance.” American Economic Association [publisher], Inter-university Consortium for 
Political and Social Research [distributor]. https://doi.org/10.38886/E130441V1.

Fischbacher, Urs. 2007. “z-Tree: Zurich Toolbox for Ready-made Economic Experiments.” Experi-
mental Economics 10 (2): 171–78.

Fogel, Suzanne O’Curry, and Thomas Berry. 2006. “The Disposition Effect and Individual Investor 
Decisions: The Roles of Regret and Counterfactual Alternatives.” Journal of Behavioral Finance 
7 (2): 107–16.

Frydman, Cary, and Colin Camerer. 2016. “Neural Evidence of Regret and Its Implications for Inves-
tor Behavior.” Review of Financial Studies 29 (11): 3108–39.

Frydman, Cary, Samuel M. Hartzmark, and David H. Solomon. 2018. “Rolling Mental Accounts.” 
Review of Financial Studies 31 (1): 362–97.

Gill, David, and Victoria Prowse. 2012. “A Structural Analysis of Disappointment Aversion in a Real 
Effort Competition.” American Economic Review 102 (1): 469–503.

Gneezy, Uri. 2005. “Updating the Reference Level: Experimental Evidence.” In Experimental Busi-
ness Research, Vol. 3, edited by Rami Zwick and Amnon Rapoport, 263–84. Boston, MA: Springer.

https://escholarship.org/content/qt9c35w8sq/qt9c35w8sq.pdf?t=ojx49q
https://doi.org/10.38886/E130441V1
http://pubs.aeaweb.org/action/showLinks?crossref=10.1038%2Fnn1514&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmnsc.29.10.1156&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frfs%2Fhhx042&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1126%2Fscience.1094550&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fjofi.12586&citationId=p_9
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.101.5.1912&citationId=p_16
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2Fs10683-006-9159-4&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmnsc.1100.1286&citationId=p_2
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.102.1.469&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jet.2014.05.001&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2F003355301556347&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.6.4.180&citationId=p_17
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1540-6261.2012.01802.x&citationId=p_3
http://pubs.aeaweb.org/action/showLinks?crossref=10.1207%2Fs15427579jpfm0702_5&citationId=p_21
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE2037&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmnsc.1090.1097&citationId=p_7
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F319620&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.97.4.1407&citationId=p_18
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frfs%2Fhhw010&citationId=p_22
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.30.5.961&citationId=p_4
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2F003355397555244&citationId=p_11
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2012.10.007&citationId=p_8


VOL. 14 NO. 1 93FIORETTI ET AL.: DYNAMIC REGRET AVOIDANCE

Hayashi, Takashi. 2008. “Regret Aversion and Opportunity Dependence.” Journal of Economic The-
ory 139 (1): 242–68.

Hayashi, Takashi, and Hisayuki Yoshimoto. 2016. “Risk- and Regret-Averse Bidders in Sealed-Bid 
Auctions.” Unpublished.

Hazan, Elad, and Satyen Kale. 2015. “An Online Portfolio Selection Algorithm with Regret Logarith-
mic in Price Variation.” Mathematical Finance 25 (2): 288–310.

Heath, Chip, Steven Huddart, and Mark Lang. 1999. “Psychological Factors and Stock Option Exer-
cise.” Quarterly Journal of Economics 114 (2): 601–27.

Holt, Charles A., and Susan K. Laury. 2002. “Risk Aversion and Incentive Effects.” American Eco-
nomic Review 92 (5): 1644–55.

Hotz, V. Joseph, and Robert A. Miller. 1993. “Conditional Choice Probabilities and the Estimation of 
Dynamic Models.” Review of Economic Studies 60 (3): 497–529.

Kahneman, Daniel. 1992. “Reference Points, Anchors, Norms, and Mixed Feelings.” Organizational 
Behavior and Human Decision Processes 51 (2): 296–312.

Klibanoff, Peter, Owen Lamont, and Thierry A. Wizman. 1998. “Investor Reaction to Salient News in 
Closed-End Country Funds.” Journal of Finance 53 (2): 673–99.
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Online Appendix

A Experimental Design
In the experiment participants made choices in 48 “stock markets,” presented to each of them in individ-
ually generated random order. In each market a participant was shown the price dynamics unfolding in
real time either until the asset was sold or until market closure after 50 periods. The price updated each
0.8 seconds. First, participants observed the market price evolve for 15 periods. Then they “entered” the
market. In the instructions this was presented as if they bought an asset in period 15. After this, partic-
ipants kept observing the evolution of the market price and had to decide when to “sell the asset.” The
payoff, or profit, that each participant received in each market was equal to the selling price minus the
entry price. Participants were paid for only one randomly chosen market. No one could lose money if the
profit of the chosen market was negative, since participants were given an initial endowment of e 10 that
covered the highest possible loss.

Each participant was making choices in two types of markets, which differed only in the amount of
information that participants received after they have sold the asset. In the No Info condition, after selling
the asset, no information about the future evolution of the price was provided. In the Info condition, after
selling the asset, participants observed how the price changed until the end of that market. In both cases
the participants could not change their decision after they have sold the asset. The market condition (No
Info or Info) was shown from period 1 on in the upper-left corner of the market graph (see figures below).

Overall, 154 participants took part in the experiment. All sessions were run in March 2017 at the CEEL
laboratory, Department of Economics, University of Trento. Another set of 135 participants took part in
the experiment in June 2016 in the same laboratory. These data are not reported in this paper. In the June
2016 experiment participants were not informed about the process that generated the price and were not
given initial training (see below). Otherwise the two experiments were identical. One session in the June
2016 experiment was aborted due to the network overload and the data was discarded. The data for one
participant in the June 2016 experiment was discarded, as she had to leave the experiment in the middle
of the market task. No other sessions or pilots were conducted. The experiments were programmed in
z-Tree (Fischbacher, 2007).

A.1 Market Details
The price dynamics for each market was generated randomly using the process yt+1 = αyt + (1− α)ε,
where yt+1 is the price in period t + 1, α = 0.6 is a fixed constant for all markets and ε ∼ U[0, 10] is an iid
random variable (uniform on [0, 10]). In period 1 each market started from price e 2.5, e 5, or e 7.5. Thus,
the price changed in the range from e 0 to e 10. All participants saw the same price dynamics for a given
market. Each market lasted for 50 periods, which was known to the participants. In period 15 of each
market the participants were forced to enter the market. This was explained to them in the instructions in
terms of their buying an object on the market in period 15 for the current market price (see instructions in
Appendix J). Then the participants were instructed that they can sell the asset at any time before period
50 and that their earnings in that market would be equal to the difference between the selling price and
the entry price (if they did not sell their earnings were equal to the price in period 50 minus the price
in period 15). The prices on the market were presented in actual Euros, so no tokens were used and
there was no need for having an exchange rate. All the information about the current market condition,
the entry price, the selling price and the current price was presented on the screen at appropriate times.
Descriptions under Figures A1 and A2 explain.

1



Figure A1: The left picture shows the market price evolution before period 15, which is marked by a
vertical red line. At period 15 the market “stopped,” so that participants could inspect the entry price.
An ENTER (ENTRATA) button should have been pressed to start the market again. After period 15 the
participants could check the entry price by looking at the top left of the screen where it was indicated in
red (right picture). To sell the asset participants needed to press EXIT (USCITA) button.

Figure A2: The right picture shows the market in Info condition after a participant sold the asset (the
period of selling is indicated by a blue vertical line). After selling the asset, the participant could see
the selling price in blue and the profit in green or red, depending on whether the profit was positive or
negative (on top of the screen). In addition, the participant observed the future evolution of the price
until period 50 (the price changed each 0.8 seconds). In the No Info condition (left picture) everything was
the same except that the participant did not observe the future price, but still had to wait until the market
closure. The sentence at the bottom of the left picture says: “Please wait until the market is closed.”

The timing of each market was as following. The new price was shown each 0.8 seconds.1 This was
long enough for participants to be able to react and sell the asset at the current price if they chose to do so.
In the Info condition participants had to observe the evolution of the price until period 50: they could not
skip to the next market. In the No Info treatment, after selling the asset, they had to wait until the market
reached period 50 (without observing the price). This was done in order to 1) remove the incentive to go
quicker through the task and 2) make No Info and Info conditions as similar as possible.

1The experiment was implemented in z-Tree (Fischbacher, 2007), which does not allow for precise time control.
Thus, the actual time between periods could have been slightly larger.
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A.2 Price Dynamics and Training
Participants were explicitly informed about the process that generates the price (see instructions in Ap-
pendix J). The formula yt+1 = αyt + (1− α)ε was explained to them and four examples of the price range
in the next period depending on the current price were given.

Participants went through a series of six training markets which could not be chosen for the payment.
The training markets were in all respects identical to the real markets except the phrase ROUND DI
PROVA (“training round”) written across the background in a very large font. Out of six training markets
two started at e 2.5, two at e 5, and two at e 7.5. One market in each pair was presented in the No Info
and one in the Info condition. The sequence of markets and conditions were independently randomized
individually for each participant.

A.3 Overall Design Details
Participants chose in 48 markets. The price dynamics for each market was pre-generated using the rule
described above (see Figure A3 below). Thus, each participant chose in exactly the same markets. For the
three subsets of 16 markets the starting price was equal to e 2.5, e 5, or e 7.5. The order of the markets
was randomized in real time for each participant. Thus, there is only an infinitesimal probability that
any two participants saw the same sequence of markets. The market condition, No Info or Info, was
determined in the following way. Half of the 16 markets of each kind (starting at e 2.5, e 5, e 7.5) were
randomly assigned to the condition No Info and another half to the condition Info. Thus, equal number
of markets of each of the three kinds were shown in the two conditions. The participants assigned to the
computers with odd numbers saw markets in these predetermined conditions. The participants assigned
to the computers with even numbers saw the same markets in the opposite conditions. Thus, for each
given market, there is an (approximately) equal number of participants who saw that market in the No
Info and Info conditions.

When participants sold the asset they could see their profit (see Figure A2). However, the participants
were informed that they will be paid for only one randomly chosen market. In order to avoid losses, the
participants were given e 10 at the beginning of the experiment, so their earnings after the market task
were e 10 plus the profit in one randomly chosen market (which could have been negative).

A.4 Additional Tasks
After choosing in the sequence of 48 markets the participants were presented with the Halt and Laury task
(Holt and Laury, 2002). We did not use the original payoffs from Holt and Laury (2002) as our participants
could have seen those before. Instead we took the equivalent payoffs from Eijkelenboom et al. (2016). The
instructions and the screenshots are presented in Appendix K.2. The participants, in addition to their
earnings in the market task, received the payoff from one of the lotteries that they chose in the Holt and
Laury task.

In the end of the experiment the participants were given a sequence of standard demographic ques-
tions.
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A.5 Market Prices

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

Figure A3: Prices in 48 markets.
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B Behavior of Regret-Free Agent
The regret-free rational agent obtains utility u(yt) when she sells the asset at time t at the price yt. In each
period she estimates the expected future utility that takes into account her optimal choices and sells the
asset if

u(yt) ≥ max{Eyt+1 [u(yt+1)|yt], Eyt+1 [vt+2|yt]}

where vt+2 = max{Eyt+2 [u(yt+2)|yt+1], Eyt+2 [vt+3|yt+1]} and the value function in the last period T is
vT = EyT [u(yT)|yT−1].2 In the experiment the price evolution is described by a Markov chain, thus, all
expectations are conditional on the past price.

We show analytically that a risk-averse agent should optimally sell the asset at a lower price than
a risk-neutral agent and risk-loving agent should sell at a higher price. Intuitively, an extremely risk-
averse agent sells immediately at any price level as a sure outcome today outweighs an uncertain outcome
tomorrow, whereas the certainty equivalent required by a risk-loving agent to sell at the same price is
higher. Thus, we formulate a prediction concerning risk attitudes:

Proposition. The optimal policy for an agent with CRRA preferences is to sell the asset above some threshold
different for each period. Other things equal, the probability of selling the asset increases in the degree of risk
aversion.
Proof. An agent without regret sells if

u(yt) ≥ max{Eyt+1 [u(yt+1)|yt], Eyt+1 [vt+2|yt]} (B.1)

where vt+2 = max{Eyt+2 [u(yt+2)|yt+1], Eyt+2 [vt+3|yt+1]} and vT = EyT [u(yT)|yT−1]. Assuming that agent
has CRRA utility function, this implies that the selling rule is

y1−ρ
t ≥ max{Eyt+1 [y

1−ρ
t+1 |yt], Eyt+1 [v̇t+2|yt]}

where v̇t+2 = max{Eyt+2 [y
1−ρ
t+2 |yt+1], Eyt+2 [v̇t+3|yt+1]} and v̇T = EyT [y

1−ρ
T |yT−1].

Let ṽt denote the value function in inequality (B.1) with u(yt) = yt and let ỹt be the price at which a
risk-neutral agent is indifferent whether to sell the asset or not:

ỹt = max{Eyt+1 [yt+1|ỹt], Eyt+1 [ṽt+2|ỹt]} (B.2)

Would a risk-seeking (averse) agent sell at the same value or continue? The answer depends on ρ. Agent
sells at ỹt if and only if

ỹ1−ρ
t ≥ max{Eyt+1 [y

1−ρ
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]}. (B.3)

Plugging (B.2) into (B.3) we get

max{Eyt+1 [yt+1|ỹt]
1−ρ, Eyt+1 [ṽt+2|ỹt]

1−ρ} ≥ max{Eyt+1 [y
1−ρ
t+1 |ỹt], Eyt+1 [v̇t+2|ỹt]}.

This inequality holds (strictly) only for a risk-averse agent with ρ ∈ (0, 1). To show this we start from
period T − 1. Notice that

EyT−1 [ṽT|yT−2]
1−ρ =

(
∑

ι

Pr{yT−1,ι|yT−2}EyT [yT|yT−1,ι]

)1−ρ

and

EyT−1 [v̇T|yT−2] = ∑
ι

Pr{yT−1,ι|yT−2}EyT [y
1−ρ
T |yT−1,ι]

(B.4)

2By design the participants in the last period are forced to sell at the current price.

5



where, given yT−2, ι enumerates all possible values of yT−1 denoted by yT−1,ι. Next notice that the RHS’s
of (B.4) can be rewritten as(

∑
ι

Pr{yT−1,ι|yT−2}∑
ξι

Pr{yT,ξι
|yT−1,ι}yT,ξι

)1−ρ

=

(
∑
ζ

pζyT,ζ

)1−ρ

and

∑
ι

Pr{yT−1,ι|yT−2}∑
ξι

Pr{yT,ξι
|yT−1,ι}y

1−ρ
T,ξι

= ∑
ζ

pζy1−ρ
T,ζ

(B.5)

respectively. Here ξι enumerates yT for each ι and ζ enumerates all combinations of ι and ξι. Now, the
RHS of the first equation in (B.5) is bigger than the RHS of the second by strict concavity of (·)1−ρ. Thus
we can conclude that EyT−1 [ṽT|yT−2]

1−ρ > EyT−1 [v̇T|yT−2] for all ρ ∈ (0, 1).
Now we consider period T − 2. For some fixed yT−2 we want to show that

max{EyT−1 [yT−1|yT−2]
1−ρ, EyT−1 [ṽT|yT−2]

1−ρ} > max{EyT−1 [y
1−ρ
T−1|yT−2], EyT−1 [v̇T|yT−2]}. (B.6)

This is straightforward since we have just shown that EyT−1 [ṽT|yT−2]
1−ρ > EyT−1 [v̇T|yT−2], which are

the second terms of the max operators. According to the same strict concavity argument as above,
EyT−1 [yT−1|yT−2]

1−ρ > EyT−1 [y
1−ρ
T−1|yT−2], the first terms of the max operators. Thus, LHS max operator

has all terms bigger than corresponding terms of the RHS max operator, which proves that the inequality
(B.6) holds.

Since (B.6) holds for all yT−2, it is true that

EyT−2 [ṽT−1|yT−3]
1−ρ = EyT−2 [max{EyT−1 [yT−1|yT−2]

1−ρ, EyT−1 [ṽT|yT−2]
1−ρ}|yT−3] >

EyT−2 [max{EyT−1 [y
1−ρ
T−1|yT−2], EyT−1 [v̇T|yT−2]}|yT−3] = EyT−2 [v̇T−1|yT−3].

This is a precursor to the one more step of the same derivation for period T − 3 as EyT−1 [ṽT|yT−2]
1−ρ >

EyT−1 [v̇T|yT−2] was for the period T − 2 step. Therefore, iterating this process, we show that (B.3) holds
with strict inequality for all t as long as ρ ∈ (0, 1). When the agent is risk-seeking, or ρ < 0, (B.3) holds
strictly with the opposite sign. The proof is the same only with all > replaced by <.

Next we show that for any admissible ρ and each period there is a unique threshold such that an
agent with CRRA utility, who follows optimal policy, always sells above this threshold and always keep
the asset below it. Notice that Eyt+1 [y

1−ρ
t+1 |yt] = Eε[(αyt + (1− α)ε)1−ρ] is a strictly increasing continuous

function of yt.3 Consider m(yt) = max{Eyt+1 [y
1−ρ
t+1 |yt], Eyt+1 [v̇t+2|yt]}. This is a function of yt that for some

yt is equal to Eε[(αyt + (1− α)ε)1−ρ] and for some yt to Eyt+1 [v̇t+2|yt]. Now, we can use the expressions
v̇τ = max{Eyτ [y

1−ρ
τ |yτ−1], Eyτ [v̇τ+1|yτ−1]} for all τ ≥ t + 2 to expand Eyt+1 [v̇t+2|yt] into a sequence of

expectations and max operators. Thus, eventually, m(yt) is a piecewise function that is equal to Eε[(αyt +
(1− α)ε)1−ρ] or pieces of weighted averages of functions of the form

Eyt+1 [...Eyτ [y
1−ρ
τ |yτ−1]...|yt] = Eεt+1 ...Eετ [(α

τ−tyt + (1− ατ−t)Eτ)
1−ρ] (B.7)

where Eτ is a weighted average of random variables εt+1, εt+2, ..., ετ. All functions in (B.7) are continuous
and strictly increasing in yt. Therefore, m(yt) is a continuous and strictly increasing since it is a series of
max operators applied to weighted averages of continuous increasing functions. It is also true that m is
strictly concave (convex) for ρ ∈ (0, 1) (ρ < 0), which also follows from the fact that it is a series of max
operators of weighted averages of strictly concave (convex) functions.

Now, we would like to know the relationship between m(yt) and y1−ρ
t . This will tell us what the

3Here and below ε, possibly with sub-indexes, is a uniformly distributed random variable on [0, 10].
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optimal policy is. Notice that m(0) > 01−ρ and m(10) < 101−ρ since m(yt) consists of mean reverting
expectations. So for low yt the optimal policy is to keep the asset and for high yt to sell. It is left to show
that m(yt) crosses y1−ρ

t at a single point. Consider any point y where y1−ρ = m(y). We want to show that
at this point the derivatives of y1−ρ and m(y) are different. As was mentioned above, m(y) is a weighted
average of functions in (B.7). Thus,

y1−ρ = ∑
ι

pιEεt+1 ...Eετι
[(ατι−ty + (1− ατι−t)Eτι)

1−ρ] = ∑
ι

pιEτι [(α
τι−ty + (1− ατι−t)Eτι)

1−ρ] (B.8)

for some enumeration {pι, τι}ι and with Eτι being short for Eεt+1 ...Eετι
. Notice that the derivatives of

functions (B.7) with respect to yt are of the form ατ−t(1− ρ)Eτ(ατ−tyt + (1− ατ−t)Eτ)−ρ, since Eτ trans-
forms into a summation of the terms (ατ−ty + (1− ατ−t)Eτ)1−ρ weighted with some probabilities and the
derivative transcends the summation. Keeping this in mind let us rewrite (B.8) as

(1− ρ)y−ρ = ∑
ι

pια
τι−t(1− ρ)Eτι [(·)−ρ] +

1− ρ

y ∑
ι

pιEτι [(1− ατι−t)Eτι(·)−ρ]

where (·)−ρ stands for (ατι−ty + (1− ατι−t)Eτι)
1−ρ. This, in turn, can be seen in terms of derivatives

(1− ρ)y−ρ =
dm(y)

dy
+

1− ρ

y ∑
ι

pιEτι [(1− ατι−t)Eτι(·)−ρ].

Here LHS is the derivative of LHS of (B.8) at y and RHS is the derivative of m at y plus a positive number.
Thus, at y the derivative of y1−ρ

t is higher than the derivative of m(yt). This implies that these two func-
tions cross at a unique point: they cannot coincide on an interval, since then their derivatives would have
been equal and they cannot cross on a disjoint set since this would have contradicted the strict concavity
or convexity of m.

Thus, we have established that the optimal policy for any CRRA utility function is to sell above some
unique threshold yt and to keep the asset below it. Combining this observation with the result that risk
the averse agent sells at a price where risk-neutral agent is indifferent and that the risk-seeking agent
keeps the asset at that price, we can conclude that risk-averse agent must have the selling threshold at a
price below the risk-neutral agent and the risk-seeking agent must have the threshold above it. Therefore,
a risk-averse agent, given the same prices, sells before a risk-neutral agent and a risk-seeking agent sells
after. �
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Figure C4: The distribution of participants by the proportion of missed optimal sales. The proportion is
calculated separately for each participant.
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Figure C5: The percentage of sales when the price reaches a new peak (dark grey) and when the price is
below the current past peak (light grey). Only observations above the optimal selling price threshold of
the risk-neutral no regret agent are considered. The error bars are ±1SE.
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period 33.
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D Description of the Variables

Variable Mean Median St. Dev. Range Definition

choice 0.94 1.00 0.24 {0, 1} 1 if the participant keeps
the asset and 0 if she sells
it

info {0, 1} 1 if the market condition is
Info and 0 if it is No Info

time 26.61 25.00 8.44 [16, 49] Time period
price 4.79 4.86 1.43 [1.20, 8.36] Current price
price2 24.96 23.59 13.83 [1.43, 69.95] Current price squared
future expected price 5.00 5.00 0.08 [3.48, 7.02] Expected future price in

period 50 conditional on
the current price, the num-
ber of periods left, and the
Markov process that gen-
erates the prices

past peak 7.58 7.52 0.59 [5.53, 8.56] Highest price in the past
future expected peak 7.64 7.78 0.45 [3.48, 8.24] Highest expected future

peak conditional on the
current price and time (see
Appendix F for details)

hl 0.60 0.60 0.17 [0, 0.9] Risk aversion parameter
from Holt and Laury task
(normalized from [0, 10] to
[0, 1]). 1 is very risk-averse,
0 is very risk-seeking

early {0, 1} 1 for first 25, 28, 30, or
32 markets depending on
specification, 0 otherwise

Table D1: Variables used in the regressions in Tables 1, E2, and E3 (Appendix E). The statistics
refer to all periods when a choice is made (periods 16 to 49).
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E Additional Regressions

Pr[choice = keep] I II III IV V VI

price –0.497∗∗∗ –0.416∗∗∗ –0.237 –0.243∗ –0.243∗ –0.243∗
(0.146) (0.161) (0.145) (0.145) (0.145) (0.145)

price2 –0.102∗∗∗ –0.113∗∗∗ –0.136∗∗∗ –0.136∗∗∗ –0.136∗∗∗ –0.136∗∗∗
(0.013) (0.014) (0.013) (0.013) (0.013) (0.013)

time –0.088∗∗∗ –0.090∗∗∗ –0.082∗∗∗ –0.083∗∗∗ –0.083∗∗∗ –0.083∗∗∗
(0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

future expected price 1.423∗∗∗ 1.223∗∗∗ 1.226∗∗∗ 1.218∗∗∗ 1.218∗∗∗ 1.217∗∗∗
(0.230) (0.251) (0.205) (0.203) (0.203) (0.203)

past peak 0.522∗∗∗ 0.617∗∗∗ 0.617∗∗∗ 0.643∗∗∗
(0.041) (0.053) (0.053) (0.140)

future expected peak 0.343∗∗∗ 0.272∗∗∗ 0.271∗∗∗ 0.247
(0.080) (0.093) (0.093) (0.244)

past peak×info –0.208∗∗∗ –0.208∗∗∗ –0.209∗∗∗
(0.072) (0.072) (0.072)

future expected peak × info 0.132∗ 0.133∗ 0.133∗
(0.074) (0.074) (0.074)

info 0.511 0.552 0.553
(0.754) (0.757) (0.756)

hl –0.649∗∗ –0.646∗∗ –0.651∗∗ –0.620∗∗ –0.622
(0.301) (0.304) (0.305) (0.307) (2.902)

info × hl –0.062 –0.060
(0.205) (0.206)

hl × past peak –0.038
(0.201)

hl × future expected peak 0.038
(0.353)

constant 4.525∗∗∗ 5.939∗∗∗ –1.044 –1.116 –1.135 –1.139
(1.161) (1.274) (1.090) (1.214) (1.222) (2.259)

N 112,137 89,951 89,951 89,951 89,951 89,951

Table E2: Random effects logit regression of the choice to keep the asset with risk preferences.
choice is zero at the time the participant sells the asset and one otherwise. Observations are all
periods in all markets for all participants in which they made a choice (periods 16 to 49). Partic-
ipants whose choices in Holt-Laury task were inconsistent with expected utility maximization
were dropped. Errors are clustered by participant and robust.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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I II III IV
Pr[choice = keep] early: 25 early: 28 early: 30 early: 32

price –0.331∗∗ –0.323∗∗ –0.280∗∗ –0.292∗∗
(0.134) (0.135) (0.133) (0.134)

price2 –0.124∗∗∗ –0.124∗∗∗ –0.128∗∗∗ –0.128∗∗∗
(0.012) (0.012) (0.012) (0.012)

time –0.092∗∗∗ –0.120∗∗∗ –0.130∗∗∗ –0.112∗∗∗
(0.005) (0.006) (0.006) (0.006)

future expected price 1.470∗∗∗ 1.646∗∗∗ 1.621∗∗∗ 1.484∗∗∗
(0.191) (0.191) (0.190) (0.186)

past peak 0.602∗∗∗ 0.588∗∗∗ 0.604∗∗∗ 0.586∗∗∗
(0.045) (0.045) (0.045) (0.045)

future expected peak 0.190∗∗ 0.057 0.022 0.179∗∗
(0.084) (0.088) (0.096) (0.088)

past peak×info –0.204∗∗∗ –0.196∗∗∗ –0.212∗∗∗ –0.205∗∗∗
(0.065) (0.065) (0.065) (0.065)

future expected peak × info 0.089 0.095 0.227∗∗ 0.168∗∗
(0.078) (0.079) (0.088) (0.085)

info 0.728 0.624 –0.136 0.199
(0.726) (0.714) (0.765) (0.755)

info × early 0.176∗∗ 0.159∗∗ –0.065 0.022
(0.072) (0.081) (0.087) (0.089)

early –0.239∗∗∗ –0.718∗∗∗ –0.854∗∗∗ –0.657∗∗∗
(0.070) (0.072) (0.078) (0.074)

constant –1.670 –0.385 0.185 –0.704
(1.086) (1.095) (1.121) (1.090)

N 112,137 112,137 112,137 112,137

Table E3: The logit regressions support the intuition in Figure 4B. The dummy variable early is
1 if the current period is smaller or equal than the value specified in each column title and 0
otherwise. Participants in the Info condition sell less often early on because of the possibility of
future regret: the coefficient on the interaction of info and early is significant and positive until
Column III. Observations are all periods in all markets for all participants in which they made a
choice (periods 16 to 49). Errors are clustered by participant and robust. The descriptions of all
the variables can be found in Appendix D.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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F The Computation of Future Regret
At period t future regret is defined as the expectation of the highest order statistic of the future T − t
prices. At every period t ∈ {2, ..., T}, yt+1 = αyt + (1− α)ut is observed, where ut is an i.i.d. random
draw from the uniform distribution on [a, b]. We use the notation yk

t to indicate the price expected in
period t given the current price in period k. T, α and yk (price at time k) are known. Assume a given
period k ∈ {1, ..., T − 2}, noting that the expected future peak in the period before the last is just the
expectation of the price in the next period. Then we can recover the expected price for any future period
beyond the current period (∀t > k) with the following formula:

yk
t = αt−kyk + (1− α)

t−k

∑
j=1

ut−jα
j−1 (F.1)

The distribution of yk
t is

P{yk
t ≤ v} = P{αt−kyk + (1− α)

t−1

∑
j=k

ut−jα
j−1 ≤ v}

= F(t−k)(v) =
∫ v

0
f(t−k)(s)ds

where f(t−k)(s) is the pdf of the sum of (t− k) uniform distributions with different supports. The support
of this distribution is (αt−kyk, αt−kyk + 10(1− α)∑t−k

j=1 αj−1). This is again when all u’s are 0 or all u’s are

10. Note that when t− k = 1 f(1)(s) = 1
αyk+(1−α)10−αyk

= 1
(1−α)10 and F(1)(s) =

s−αyk
(1−α)10 .

The expected future peak is computed as:

Future peakperiod k =
∫ 10

0
vd

T−k

∏
j=1

F(j)(v)

=
∫ 10

0
v

T−k

∑
j=1

f(j)(v)
T−k

∏
h 6=j

F(h)(v)dv

=
∫ 10

0
v

T−k

∑
j=1

f(j)(v)
T−k

∏
h 6=j

∫ v

0
f(h)(s)ds dv

To derive f(t−k)(v) analytically we use recent results in the statistical literature (Potuschak and Muller,
2009). For simplicity assume that k = 1. In fact, the random variable in (F.1) is the sum of independent
uniformly distributed [0,10] random variables times (1− α) × αj−1, plus αt−1 y1

t−1 , which is equal to the
summation of t − 1 uniformly distributed random variables in [αt−1 y1

t−1 , αt−1 y1
t−1 + 10(1 − α)αj−1], ∀j ∈

{1, ..., t− 1}. According to Potuschak and Muller (2009, section 2.2.2, page 180), the density is

f(n)(s) =
1

2n(n− 1)! ∏k ak

2n

∑
j=1

σj max{a.εj − |s−∑
k

ck|, 0}n−1 (F.2)

where . indicates the dot product, lower bar means vector, a = {5(1− α), 5α(1− α), 5α2(1− α), ...5αt−1(1−
α)}, c = {αt−1 y1

t−1 + 5(1− α), αt−1 y1
t−1 + 5α(1− α), αt−1 y1

t−1 + 5α2(1− α), ...αt−1 y1
t−1 + 5αt−1(1− α)}, ∀ 1 ≤

j ≤ t− 1. σj and εj are matrices which deal with positive and negative signs (see Potuschak and Muller
(2009)). We can rewrite the distribution as follows:

P{y1
t ≤ v} = F(t)(v) =

∫ v

0
f(t−1)(s)ds

13



The support of this distribution is [αt−1y1, αt−1y1 + 10(1− α)∑t−1
j=1 αj−1]. Note that f(1)(s) = 1

αy1+(1−α)10−αy1
=

1
(1−α)10 and F(1)(s) =

s−αy1
(1−α)10 .

F.1 Normal Approximation
(F.2) is problematic, because, as the number of uniform RVs to be summed increases, the denominator goes
to zero since ak → 0. This makes estimation intractable. Another unappealing feature of this equation is
that computation is extremely slow. Therefore, we follow Potuschak and Muller (2009) who proposed to
approximate f(n)(v) = f(t−k)(v) with the following normal distribution:

yk
t ∼ N

(
∑

k
ck, ∑

k

(2 · ak)
2

12
)

The approximation is based on the fact that the sum of uniform distributions is centered around ∑k ck
with variance 1

12 (b − a)2, where b and a are the upper and lower bounds of the support of the sum of
uniform distributions.

It can be shown that the sum of such i.n.d. uniformly distributed random variables converges to a
normal distribution by the Liapounov Central Limit Theorem. The condition for convergence is:

lim
N→∞

∑N
i=1 E[|yi − µi|2+β]

(∑N
i=1 σ2

i )
2+β

2

= 0,

for some choice of β > 0, where E[yi] = µi and V[Xi] = σ2
i . To see this assume β = 1 for simplicity and

denote Xi = yi − µi. Because µi = ci and the support of yi is [ci − ai, ci + ai], Xi is uniformly distributed
in the interval [−ai, ai] = [−5(1 − α)αi−1, 5(1 − α)αi−1]. The numerator of the CLT condition involves
E[|Xi|3] =

∫ ai
−ai
|s|3 fi(s)ds =

∫ ai
−ai
|s|3 1

2ai
ds. Solving the integral we get:

E[|Xi|3] =
1

2ai

1
4ai

s4sgn(s)
∣∣ai

−ai

=
125
4

(1− α)3α3(i−1)

Therefore, the numerator is 125
4 ∑N

i (1 − α)3α3(i−1). Similarly, the denominator can be rewritten using

the formula for the variance of the normal distribution as
( 25

3

) 3
2
(

∑N
i (1− α)2α2(i−1)) 3

2 (use the fact that
σ2

i = 1
12 (ci + ai − (ci − ai))

2 = 1
12 (2× ai))

2). Taking the ratio of these two quantites, the result is W ×
∑N

i (1−α)3α3(i−1)(
∑N

i (1−α)2α2(i−1)
) 3

2
, where 0 < W < 1 is a constant. Finally, we can establish that:

lim
N→∞

=
∑N

i=1 E[|Xi|3]
(∑N

i=1 σ2
i )

3
2

= W × ∑N
i=1(1− α)3α3(i−1)(

∑N
i=1(1− α)2α2(i−1)

) 3
2

= 0

because the denominator contains positive interaction terms. Therefore, ∑ yi ∼ N
(

∑k ck, ∑k
(2×ak)

2

12

)
.
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Figure F7: pdf, sum of 3 uniform RVs Figure F8: pdf, sum of 13 uniform RVs

Figure F9: CDF, sum of 3 uniform RVs Figure F10: CDF, sum of 13 uniform RVs
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G Discretization of the State Space and Transition Matrix
After discretization of the state space, the process describing the evolution of the price at each period of
time can be represented by a discrete Markov chain. In fact, the only determinant of price in the next
period is the price in the previous period. The discretization is done following Tauchen (1986). See also
Aguirregabiria and Magesan (2016, page 23).

The stochastic shock follows the following AR(1) process:

yi,t+1 = µ + ρyi,t + ε (G.1)

where yi,t+1, yi,t are the prices for participant i = {1, ..., N} at time t + 1 and t respectively, and ε ∼
N(0, σ2

i ). This panel structure is composed of 48 sequences (the individual dimension) and 50 periods
(the time dimension). µ̂ and ρ̂ are found using the covariance estimator. The estimates are µ̂ = 1.97,
ρ̂ = 0.60 and σ̂ = 1.16. The estimate of ρ is very close to the parameter α which updates the price from
period yt to yt+1 (α = 0.6).

Let {y1, ..., yK} denote the support of the discretized variable Ỹi,t, where y1 > y2 > ... > yK−1 > yK

with K = 400 are the points in the support. Tauchen (1986) suggests using

yK =
µ

1− ρ
+ m×

(
σ2

1− ρ2

) 1
2

y1 =
µ

1− ρ
−m×

(
σ2

1− ρ2

) 1
2

and yk are K − 2 equidistant points within yK and y1, such that the distance between any two points is
ω. m is the density of the K points (m is set to 3). This choice of the parameters results in a support with
lower bound (y1) equal to e0.59 ca., upper bound (y200) equal to e9.32 ca., and interval between adjacent
points (ω) equal to e0.02 ca.

The probability of transitioning from state y to y′ is defined as pi,j = Pr(y′ = yj|y = yi), which de-
scribes the element in the transition matrix in row i and column j. Because of the normality assumption,4

the transition probability to a state k, 1 < k < K, from i is:

pi,k = Φ
(

yk + ω
2 − µ̂− ρ̂yi

σ̂

)
−Φ

(
yk − ω

2 − µ̂− ρ̂yi

σ̂

)
which can be thought as the probability that ρyi + ε ∈ [ρyj − ω

2 , ρyj + ω
2 ]. Analogously, the transition

probability to the first and last state are:

pi,1 = Φ
(

y1 + ω
2 − µ̂− ρ̂yi

σ̂

)
pi,K = 1−Φ

(
yK − ω

2 − µ̂− ρ̂yi

σ̂

)
Tauchen (1986) shows that this conditional distribution converges in probability to the true conditional
distribution for the stochastic process in (G.1). In fact, it can be shown that such a discretization implies a
stationary distribution with AR(1) parameters of ρ = 0.60 (equal to the α used in the experiment).

4The standardization implies that the distribution is a standard normal.
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H Full Derivation of the Dynamic Discrete Choice Model
In this section we present the dynamic discrete choice model that will be used for the structural estimation
of the risk and regret parameters of the utility function. The following derivations are also sketched in
Section 5. Analogously to the logit panel regressions in Table 1, participants’ choice between selling the
asset or continuing still follows a threshold rule. However, they now take into account the Markovian
nature of the problem. In particular, a participant’s intertemporal utility is

E

{
∑
t=1

βt−1ud
t (xt) + εdt

t

}
where β ∈ (0, 1) is a discount factor and εdt

t is an error term. As is customary in the dynamic discrete
choice literature (Abbring, 2010; Aguirregabiria and Mira, 2010) it is assumed to be known and equal for
all participants.5 d is the participant’s binary choice at time t ≤ T:

dt =

{
1, keep the asset
0, sell the asset.

udt(xt) is the payoff after choosing alternative dt; the observables are described by the realization of xt,
which is a tuple consisting of the current price yt, the past maximum sp,t, and the expected future maxi-
mum price s f ,t. We use a utility function which incorporates past and future regret as well as risk prefer-
ences. That is, we are interested in a utility function of the type u(xt) = U(xt)− R(xt), where U(xt) is a
consumption utility function and R(xt) measures regret.

The flow (per period) payoff from choice dt at period t is udt + εdt
t where the error term εdt

t is indepen-
dent of xt. As is customary, the error term is assumed to be εdt = ε̃dt − σεγ where ε̃dt is distributed Type
I extreme value with location parameter equal to zero and scale parameter σε = 1.6 By the properties of
the Type I extreme value distribution, the mean of ε̃dt is γ (the Euler’s constant). εdt is therefore mean
zero. Given these preliminaries, denote by Vt(xt, εt) = maxdt∈{0,1}{vdt

t (xt) + εdt
t } the value function at the

beginning of period t with εdt
t = {ε0

t , ε1
t} and define the alternative specific value function (ASVF) for option

dt ∈ {0, 1} at time t as:

vdt
t (xt) =

{
0 + βE{vt+1(xt+1)|xt, dt = 1} if dt = 1 (keep)
u0(xt) if dt = 0 (sell)

(H.1)

where the payoff of continuing is normalized to 0. Note that choosing to sell the asset implies null future
payoffs (terminating action). The ex-ante value function in (H.1), can be rewritten as the expectation over
the error term, εt, of the value function at time t

vt(xt) ≡
∫

Vt(xt, εt)dΛ(εt)

where Λ(·) is the logit distribution and Vt(xt, εt) = maxdt∈{0,1}{vdt
t (xt) + εdt

t }. Define the alternative specific
value function (ASVF) as:

vdt
t (xt) = udt(xt) + βE{vt+1(xt+1)|xt, }, dt ∈ {0, 1}. (H.2)

5Identification of the discount factor is possible only under an exclusion restriction (Magnac and Thesmar, 2002),
and its estimation is generally hard. In order to circumvent this issue, we show that the estimations are robust to
different values of β.

6The standard deviation of the error term is not identifiable in general, and therefore assumed to be equal to 1.
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Because of the property of the Bellman equation, the optimal decision rule can be summarized as follows:

dt =

{
1 if v1

t (xt)− v0
t (xt) ≥ ε0

t − ε1
t at t

0 otherwise

where vdt(·) is defined as in (H.2). Denote the Conditional Choice Probability (CCP) of selling (action 0) in
period t as Pr{dt = 0|xt} ≡ p0

t (xt):

p0
t (xt) =

exp(v0
t (xt))

exp(v0
t (xt)) + exp(v1

t (xt))
=

1
1 + exp(v1

t (xt)− v0
t (xt))

. (H.3)

Therefore p0
t (xt) = Λ{v1

t (xt)− v0
t (xt)}. Due to the properties of the logit distribution Λ{·}:

φ
(

p0
t (xt)

)
≡ ln

(
1− p0

t (xt)
)
− ln

(
p0

t (xt)
)
≡ v1

t (xt)− v0
t (xt). (H.4)

φ(·) is estimable from choice data using (H.3) and (H.4) for each period t. Hence the difference in the
alternative specific value functions, v1

t (xt)− v0
t (xt), is known for every t. We can write the two ASVFs as

follows:

v0
t (xt) = u0(xt)

v1
t (xt) = 0 + β

∫
X

∫
ε
max{v0

t+1(xt+1) + ε0
t+1, v1

t+1(xt+1) + ε1
t+1)}dΛ(ε)dF(xt+1|xt),

(H.5)

where the expectation in the second equation is only over the continuation alternative (1), because the
transition matrix in case the absorbing choice (0) is chosen is zero for all xt (i.e. F(xt+1|xt, dt = 0) = 0).
The estimation is based on the difference of the two ASVFs in (H.5):

v1
t (xt)− v0

t (xt) = −u(xt) + β
∫
X

∫
ε
max{v0

t+1(xt+1) + ε0
t+1, v1

t+1(xt+1) + ε1
t+1)}dΛ(ε)dF(xt+1|xt) (H.6)

Notice that the LHS of (H.6) can be computed directly from the data using (H.4). The properties of the
logit distribution are helpful to rewrite equation H.6 in a form that allows for estimation by non-linear
least squares. In fact, the ASVF for continuing (second equation in H.5) can be rewritten as follows

v1
t (xt) = β

∫
X

∫
ε
max{v0

t+1(xt+1) + ε0
t+1, v1

t+1(xt+1) + ε1
t+1}dΛ(ε)dF(xt+1|xt)

= β
∫
X

γ + log
(

exp(v0
t+1(xt+1)− γ) + exp(v1

t+1(xt+1)− γ)
)
dF(xt+1|xt)

= β
∫
X

γ + log
((

1 + exp(v1
t+1(xt+1)− v0

t+1(xt+1))
)

exp(v0
t+1(xt+1)− γ)

)
dF(xt+1|xt)

= β
∫
X

(
u0(xt+1)− log(p0

t+1(xt+1)
)

dF(xt+1|xt)

where dt+1 is the decision in the next period and γ is the Euler’s constant. The last row uses (H.3).
Therefore the difference of the two ASVFs in (H.6) becomes

v1
t (xt)− v0

t (xt) = −u0(xt) + β
∫
X

(
v0

t+1(xt+1)− log(p0
t+1(xt+1)

)
dF(xt+1|xt).

By replacing the dependent variable in the last equation with φ(p0
t (xt)) and by discretizing the state space
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X the objective function becomes

φ(p0
t (xt)) = −u0(xt) + β ∑

xt+1∈X

(
v0

t+1(xt+1)− log(p0
t+1(xt+1)

)
f (xt+1|xt)

which concludes the derivation.
Note that the regret components are functions of price (yt is the only random variable) and time.

In fact, sp,t = maxτ≤t yτ and s f ,t = g(yt, t), where g is a known function that is increasing in the first
argument and decreasing in the second.7 Therefore,

Pr{yt+1, sp,t+1, s f ,t+1|xt, dt = 1} = f (yt+1, sp,t+1, s f ,t+1|yt, sp,t, s f ,t) = f (yt+1, sp,t+1, s f ,t+1|yt, sp,t).

The transition of the past peak is fully defined by the future price: if yt+1 ≥ sp,t then sp,t+1 = yt+1 and
sp,t+1 = sp,t otherwise. For clarity, consider the following example: given the information available at
period t < T, the expected utility from keeping the asset one period longer, in the Info condition, is given
by

E[u(xt+1)|xt] = ∑
yt+1

[1{yt+1≥sp,t}u(yt+1, yt+1, g(·)) + 1{yt+1<sp,t}u(yt+1, max
τ≤t

yτ, g(·))] f (yt+1|yt).

Finally, the transition of the expected future peak is completely determined by the price and time accord-
ing to the function g(yt, t).

7g(·) is not strictly monotonic in the two arguments because of the discretization imposed to the data.
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I Additional Estimations of the Structural Model
In this section, we propose a series of robustness checks employing different specifications of the utility
function compared to that in the main text (see Section 4) to study how ω, α, and λ affect decisions.

I.1 No Future Regret in No Info Condition
Here we estimate several models where we assume that participants do not experience future regret in
the No Info condition. Suppose that the per-period utility function

u(yt, sp,t, s f ,t) = πU(yt, )− R(sp,t, s f ,t) (I.1)

includes a regret function R(·, ·) defined by

R(sp,t, s f ,t) = 1{No Info}ωNIsp,t + 1{Info}
(
ωIsp,t + αIs f ,t

)
. (I.2)

The arguments of the regret function are the past and expected future peaks and the market conditions
are denoted by the subscripts “NI” for No Info and “I” for Info. The indicator function distinguishes the
utility derived in one condition from the other. If ωNI , ωI , and αI are not significantly different from zero,
the participants are categorized as regret neutral.

The results from estimating (5.3) are shown in the first three columns of Table I4 and are obtained by
nonlinear least squares on the dataset including periods t ∈ {16, ..., 48}.8 The results are robust across
different designs and discount factors.

Estimation of (I.2) Estimation of (I.3)

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

π̂ 1.892∗∗∗ 1.890∗∗∗ 1.888∗∗∗ 1.884∗∗∗ 1.882∗∗∗ 1.880∗∗∗
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

ω̂NI 0.313∗ 0.379∗ 0.464∗ 0.364∗ 0.428∗∗ 0.508∗∗∗
(0.188) (0.185) (0.180) (0.188) (0.185) (0.181)

ω̂I −0.073 0.033 0.145 1.539∗∗∗ 1.636∗∗∗ 1.712∗∗∗
(0.195) (0.192) (0.188) (0.400) (0.359) (0.326)

α̂I 0.174∗∗ 0.221∗∗ 0.262∗∗∗ 1.488∗∗∗ 1.552∗∗∗ 1.595∗∗∗
(0.076) (0.075) (0.074) (0.295) (0.262) (0.238)

λ̂I −0.206∗∗∗ −0.215∗∗∗ −0.221∗∗∗
(0.045) (0.041) (0.038)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table I4: The estimation of (5.3) with the regret terms as in (I.2) and (I.3) in periods 16 to 48 for
different values of the discount factor β. The utility is assumed linear. Standard errors are in
parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

The estimation of (I.2) in Table I4 shows that participants are both past and future regret averse. In
particular, in the specification (I.2) past regret is significant in the No Info condition, while future regret

8For consistency period 49 is dropped because choices taken in this period are directly affected by the fact that
participants are forced to sell in period 50. This marginally shrinks the dataset from 112,137 to 111,613 observations.
Including period 49 does not change the results. Note that the CCP must still be computed for period 49.
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is significant in the Info condition which means that our participants are also influenced by future regret
avoidance. Notice that past regret is not significant in the estimation of (I.2). The absence of the effect
of the past peak is surprising given the discussion in Section 3 and the regression analysis in Tables 1,
E2, and E3, which shows the centrality of the sp,t term for both conditions. The reason for this might be
that the model is missing an important interaction between the past and the future regret: they might
reinforce or inhibit each other. Such an interaction was previously exposed in the discussion of Figure 4B
and regression E2 in Section 3 when we compared the decisions to sell early and late in the two conditions.
Its presence was also used to explain changes in the probability of selling the asset with different values
of the past and future peak in Figure 6 in Section 6.1. To our knowledge, no one in the literature pointed
out the importance of this interaction. To account for it we reformulate the regret function to include an
interaction term in the Info condition as in (4.1):

R(sp,t, s f ,t) = 1{No Info}ωNIsp,t + 1{Info}
(
ωIsp,t + αIs f ,t + λIsp,ts f ,t

)
. (I.3)

The interaction term captures the cross-partial derivative of the regret function, which allows us to
understand the degree of complementarity or substitutability of the two peaks. The last three columns
of Table I4 display the results of the estimation of (5.3) with the regret term (I.3). The results confirm
that participants are averse to past regret in both conditions and to future regret in the Info condition. In
addition, it indicates a pattern of substitution between the two reference points, as λ̂I < 0. Notice also
that the estimate of the coefficient on the consumption utility is higher than either the coefficient on past
or future regret in the Info condition. As we will see below this implies that participants care more about
consumption than regret.9

I.2 Regret and Risk Preferences
This section reports estimates for several models displaying different parameterization of the regret-
averse utility function and risk-aversion. All estimations are consistents with the findings displayed in
Section 6. The tables below show NLS estimates assuming the following discount rates: β ∈ {99.65%,
99.60%, 99.55%}. The objective function is (5.3) in Section 5. We modify (I.1) to allow for risk aversion

u(yt, sp,t, s f ,t) = πU(yt; ρ)− R(sp,t, s f ,t; ρ),

where U(yt; ρ) represents either a risk-neutral agent (ρ = 0) or CRRA with risk aversion parameter ρ

(e.g., x1−ρ−1
1−ρ ), and R(·, ·; ρ) is the regret function. The dataset is discretized over 400 points according to

the procedure laid out in Section G.
The following utility function (Model 1) is estimated in Table I5

u(yt, sp,t, s f ,t; ρ) = πU(yt; ρ)−ωU(sp,t; ρ)− αU(s f ,t; ρ).

The first three columns refer to the linear utility case while the remaining part of the table reports estimates
for the CRRA case.

Table I6 includes different coefficients for the two conditions and an interaction term as shown in (I.3).

9At this point we should mention that the results of the estimations are very similar in all models if we as-
sume CRRA utility function instead of the linear one. In this case the regret term becomes R(sp,t, s f ,t; ρ) =

1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t; ρ)U(s f ,t; ρ)

)
, where ρ is a risk preference pa-

rameter in U(y; ρ) = (y1−ρ − 1)/(1− ρ). The same estimation as in Table I4, only with an additional parameter ρ, is
presented in Table I7 in Appendix I.2, which also contains several other model specifications. Overall, the estimated
risk preferences are close to risk neutrality in all alternative models and the coefficients on the rest of the parameters
stay similar.
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Two models are reported with different interaction terms. In Model 2 the regret term is specified as

R = 1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
while in Model 3 the regret term is:

R = 1{No Info}ωNIU(sp,t; ρ) + 1{Info}
(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIsp,t × s f ,t

)
.

The last two equations assume CRRA utility because in the linear case they would produce the same
estimate as those in the rightmost columns of Table I4.

Table I7 replicates the results of Table I4. The estimates show that the utility function is almost linear
the regret parameters stay qualitatively unchanged.

Finally, Table I8 estimates πU(yt; ρ)− R(sp,t, s f ,t, ρ) where the regret term is defined as

R(sp,t, s f ,t; ρ) = 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t; ρ)U(s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t; ρ)U(s f ,t; ρ)

)
in Model 4 and

R(sp,t, s f ,t; ρ) = 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t × s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
in Model 5, where U(·; ρ) is a CRRA utility function (the estimates report very mild risk-seeking pref-
erences, while the regret parameters do not change substantially). Overall, the results are very similar
across all tables, and corroborate our conclusions outlined in Section 7.

Section I.3 estimates a similar model allowing for loss aversion.

Model 1
Linear Utility CRRA Utility

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

ρ̂ 0.061∗∗∗ 0.061∗∗∗ 0.062∗∗∗
(0.017) (0.017) (0.017)

π̂ 1.892∗∗∗ 1.890∗∗∗ 1.887∗∗∗ 2.068∗∗∗ 2.068∗∗∗ 2.069∗∗∗
(0.011) (0.011) (0.011) (0.052) (0.052) (0.052)

ω̂ 0.128 0.213 0.313∗ 0.235 0.308∗ 0.400∗∗
(0.144) (0.142) (0.139) (0.170) (0.170) (0.169)

α̂ 0.176∗∗∗ 0.219∗∗ 0.255∗∗∗ 0.122 0.161∗ 0.196∗∗
(0.076) (0.075) (0.073) (0.086) (0.085) (0.083)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table I5: The estimation of (5.3) with the regret terms as in Model 1, specified in Appendix I.2
in periods 16 to 48 for different values of the discount factor β. The CCP are defined as in (6.1),
maintaining the coefficient for the future regret term (β3) equal to zero in the No Info condition.
Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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Model 2 Model 3

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ 0.070∗∗∗ 0.074∗∗∗ 0.072∗∗∗ 0.074∗∗∗ 0.075∗∗∗ 0.076∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)
π̂ 2.089∗∗∗ 2.094∗∗∗ 2.091∗∗∗ 2.099∗∗∗ 2.101∗∗∗ 2.103∗∗∗

(0.053) (0.053) (0.053) (0.054) (0.054) (0.054)
ω̂NI 0.548∗∗ 0.743∗∗∗ 0.662∗∗∗ 0.567∗∗ 0.616∗∗∗ 0.683∗∗∗

(0.225) (0.217) (0.221) (0.227) (0.226) (0.223)
ω̂I 2.234∗∗∗ 2.516∗∗∗ 2.441∗∗∗ 2.272∗∗∗ 2.368∗∗∗ 2.442∗∗∗

(0.588) (0.448) (0.484) (0.570) (0.511) (0.465)
α̂I 1.965∗∗∗ 2.136∗∗∗ 2.098∗∗∗ 1.947∗∗∗ 2.008∗∗∗ 2.046∗∗∗

(0.450) (0.337) (0.364) (0.424) (0.376) (0.340)
λ̂I −0.317∗∗∗ −0.349∗∗∗ −0.341∗∗∗ −0.241∗∗∗ −0.248∗∗∗ −0.253∗∗

(0.080) (0.065) (0.068) (0.054) (0.049) (0.045)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table I6: The estimation of (5.3) with the regret terms as in Models 2 and 3, specified in Appendix
I.2 in periods 16 to 48 for different values of the discount factor β. The CCP are defined as in (6.1),
maintaining the coefficient for the future regret term (β3) equal to zero in the No Info condition.
Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.

Estimation of (I.2) Estimation of (I.3)

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ 0.060∗∗∗ 0.060∗∗∗ 0.062∗∗∗ 0.070∗∗∗ 0.071∗∗∗ 0.073∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)
π̂ 2.066∗∗∗ 2.066∗∗∗ 2.068∗∗∗ 2.089∗∗∗ 2.090∗∗∗ 2.092∗∗∗

(0.052) (0.052) (0.052) (0.053) (0.053) (0.053)
ω̂NI 0.454∗∗ 0.499∗∗ 0.567∗∗∗ 0.548∗∗ 0.596∗∗ 0.662∗∗

(0.219) (0.218) (0.215) (0.225) (0.224) (0.221)
ω̂I −0.008 0.091 0.202 1.917∗∗∗ 2.020∗∗∗ 2.100∗∗∗

(0.224) (0.223) (0.221) (0.515) (0.464) (0.424)
α̂I 0.120 0.169∗∗ 0.212∗∗ 1.647∗∗∗ 1.714∗∗∗ 1.757∗∗∗

(0.086) (0.085) (0.084) (0.374) (0.331) (0.300)
λ̂I −0.295∗∗∗ −0.307∗∗∗ −0.317∗∗∗

(0.072) (0.066) (0.061)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table I7: The estimation of (5.3) with the regret terms as in (I.2) and (I.3) in periods 16 to 48
for different values of the discount factor β. The CCP are defined as in (6.1), maintaining the
coefficient for the future regret term (β3) equal to zero in the No Info condition. Standard errors
are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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Model 4 Model 5

β = 99.65% β = 99.60% β = 99.55% β = 99.65% β = 99.60% β = 99.55%

CRRA Utility
ρ̂ −0.134∗∗∗ −0.133∗∗∗ −0.131∗∗∗ −0.134∗∗∗ −0.133∗∗∗ −0.131∗∗∗

(0.022) (0.022) (0.022) (0.022) (0.022) (0.022)
π̂ 1.474∗∗∗ 1.476∗∗∗ 1.478∗∗∗ 1.474∗∗∗ 1.476∗∗∗ 1.478∗∗∗

(0.048) (0.048) (0.048) (0.048) (0.048) (0.048)
ω̂NI 0.431 0.633 0.784∗∗ 0.415 0.635 0.799∗∗

(0.435) (0.393) (0.360) (0.470) (0.425) (0.388)
ω̂I 1.526∗∗∗ 1.601∗∗∗ 1.650∗∗∗ 1.670∗∗∗ 1.751∗∗∗ 1.803∗∗∗

(0.459) (0.415) (0.380) (0.499) (0.451) (0.413)
α̂NI −0.236 −0.075 0.042 −0.251 −0.073 0.057

(0.314) (0.278) (0.250) (0.351) (0.311) (0.280)
α̂I 1.188∗∗∗ 1.230∗∗∗ 1.252∗∗∗ 1.332∗∗∗ 1.380∗∗∗ 1.406∗∗∗

(0.329) (0.291) (0.262) (0.371) (0.329) (0.297)
λ̂NI 0.018 −0.002 −0.017 0.016 −0.002 −0.015

(0.043) (0.039) (0.036) (0.038) (0.035) (0.032)
λ̂I −0.163∗∗∗ −0.170∗∗∗ −0.174∗∗∗ −0.144∗∗∗ −0.150∗∗∗ −0.153∗∗

(0.048) (0.044) (0.040) (0.043) (0.040) (0.037)

N 111,613 111,613 111,613 111,613 111,613 111,613

Table I8: The estimation of (5.3) with the regret terms as as in Model 4 and 5, specified in Ap-
pendix I.2 in periods 16 to 48 for different values of the discount factor β. The CCP are defined
as in (6.1) for both conditions. Standard errors are in parenthesis.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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I.3 Loss Aversion
Table I9 reports estimates for the model in (6.2) allowing for loss aversion. Loss aversion is defined as
the utility loss due to selling at a price below the entry price. The regret function including loss aversion,
R̃(sp,t, s f ,t) is defined as:

1{No Info}
(
ωNIsp,t + αNIs f ,t +λNIsp,t× s f ,t

)
+1{Info}

(
ωIsp,t + αIs f ,t +λIsp,t× s f ,t

)
+ψ1{yt<entry price}(yt− entry price)

Table I10 shows the same analysis allowing for CRRA risk preferences. In both models the coefficient ψ
multiplies the negative loss. Define R̃(sp,t, s f ,t; ρ, ψ) to include both regret and loss aversion as:

1. 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t; ρ)×U(sp,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t; ρ)×U(s f ,t; ρ)

)
+ ψ1{yt<entry price}(yt − entry price)

2. 1{No Info}
(
ωNIU(sp,t; ρ) + αNIU(s f ,t; ρ) + λNIU(sp,t × s f ,t; ρ)

)
+ 1{Info}

(
ωIU(sp,t; ρ) + αIU(s f ,t; ρ) + λIU(sp,t × s f ,t; ρ)

)
+ ψ1{yt<entry price}(yt − entry price)

In these tables ψ is constrained to be non-negative, as participants would enjoy a loss otherwise.

Parameter β = 99.65% β = 99.60% β = 99.55%

Linear Utility
π̂ 1.832∗∗∗ 1.830∗∗∗ 1.829∗∗∗

(0.022) (0.022) (0.022)
ω̂NI 1.075∗∗∗ 1.255∗∗∗ 1.386∗∗∗

(0.464) (0.416) (0.378)
ω̂I 2.195∗∗∗ 2.240∗∗∗ 2.266∗∗∗

(0.477) (0.427) (0.388)
α̂NI 0.070 0.214 0.316

(0.341) (0.303) (0.274)
α̂I 1.665∗∗∗ 1.680∗∗∗ 1.681∗∗∗

(0.348) (0.309) (0.281)
λ̂NI −0.030 −0.050 −0.064

(0.051) (0.046) (0.043)
λ̂I −0.244∗∗∗ −0.247∗∗∗ −0.249∗∗∗

(0.053) (0.048) (0.044)
ψ̂ 0.000 0.000 0.000

(0.024) (0.024) (0.024)

N 111,613 111,613 111,613

Table I9: Estimation of regret and loss-aversion parameter in the risk-neutral case. Periods: 16 to
48. Standard errors are in parenthesis. ψ̂ is the estimated coefficient of loss aversion.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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Parameter β = 99.65% β = 99.60% β = 99.55%

Model 1
ρ̂ −0.051∗∗∗ −0.053∗∗ −0.049∗∗

(0.024) (0.024) (0.024)
π̂ 1.698∗∗∗ 1.690∗∗∗ 1.699∗∗∗

(0.070) (0.069) (0.070)
ω̂NI 0.505 0.696 0.862∗∗

(0.492) (0.441) (0.405)
ω̂I 1.664∗∗∗ 1.714∗∗∗ 1.768∗∗∗

(0.517) (0.464) (0.426)
α̂NI −0.246 −0.079 0.033

(0.355) (0.312) (0.282)
α̂I 1.323∗∗∗ 1.354∗∗∗ 1.364∗∗∗

(0.371) (0.327) (0.296)
λ̂NI 0.019 −0.004 −0.020

(0.055) (0.050) (0.046)
λ̂I −0.204∗∗∗ −0.208∗∗∗ −0.211∗∗∗

(0.061) (0.055) (0.052)
ψ̂ 0.000 0.000 0.000

(0.027) (0.027) (0.027)
Model 2

ρ̂ −0.063∗∗ −0.051∗ −0.055∗∗
(0.024) (0.024) (0.024)

π̂ 1.667∗∗∗ 1.698∗∗∗ 1.683∗∗∗
(0.069) (0.070) (0.069)

ω̂NI 0.505 0.747 0.936∗∗
(0.529) (0.486) (0.440)

ω̂I 1.520∗∗∗ 1.958∗∗∗ 2.107∗∗∗
(0.557) (0.515) (0.469)

α̂NI −0.210 −0.045 0.102
(0.398) (0.360) (0.322)

α̂I 1.254∗∗∗ 1.583∗∗∗ 1.679∗∗∗
(0.417) (0.381) (0.343)

λ̂NI 0.011 −0.008 −0.026
(0.050) (0.048) (0.043)

λ̂I −0.155∗∗∗ −0.202∗∗∗ −0.214∗∗∗
(0.056) (0.055) (0.051)

ψ̂ 0.000 0.000 0.000
(0.027) (0.027) (0.027)

N 111,613 111,613 111,613

Table I10: Estimation of models 1 and 2. Periods: 16 to 48. Standard errors are in parenthesis. ψ̂
is the estimated coefficient of loss aversion.
∗∗∗,∗∗ ,∗ denote statistical significance at the 1, 5 and 10 percent level.
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J Instructions (English)

J.1 Market Task
J.1.1 General Instructions

Dear Participants,
You are participating in a decision making experiment which consists of a main part and a questionnaire.
If you follow the instructions carefully, you can earn a considerable amount of money depending on your
decisions and random events. Your earnings will be paid to you at the end of the experiment.

During the experiment you are not allowed to communicate with anybody. In case of questions,
please raise your hand. Then we will come to your seat and answer your questions. Any violation of this
rule excludes you immediately from the experiment and all payments.

In the end of the experiment the payment will be made in CASH.

J.1.2 The Task

In this experiment you will make decisions in 48 different tasks. Each task is separate and does not depend
on the previous tasks in any way. At the beginning of each task you receive 10 Euro. You can earn or lose
money depending on your choices. This money will be added or subtracted from 10 Euro.
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J.1.3 Structure of the Task

Imagine that you are participating in a financial market and that you should decide at each market (trial)
when to sell an object. At the beginning of each market (trial) you observe the price of an object for 15
periods (each period lasts 0.8 seconds). During these periods you can see how the price of the object
evolves before you enter the market which means that you cannot make any decisions during these 15
periods. The picture on the right shows the example of the price of the object varying during this starting
phase. When you see a vertical red line drawn across the graph, this means that the starting phase of
price observation is over. The current price of the object at this point corresponds to the price at which
you enter the market. On the top of the screen you can see the current price displayed in each period
(between e 0 and e 10).
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J.1.4 The Process Guiding the Value

In every market the value changes according to the following process. If the value in the current period
is V, then the value in the next period depends on 1) the current value V and 2) the randomly generated
number S. In particular, the value in the next period is equal to 0.6V + S, where S is a number between
0 and 4. This means that in each period any number between 0 and 4 (for example, 2.1789 or 3.51) has
equal probability of being chosen and will contribute to the future value. Therefore, any number in the
interval between 0.6V and 0.6V + 4 has equal probability to be the value of the object in the next period.
The table below shows some examples. Notice also that in each period the current value cannot be higher
than e 10 and lower than e 0.

CURRENT INTERVAL FOR THE VALUE IN THE NEXT PERIOD
VALUE MINIMAL VALUE MAXIMAL VALUE

e 2 e 1.2 e 5.2
e 4 e 2.4 e 6.4
e 6 e 3.6 e 7.6
e 8 e 4.8 e 8.8
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J.1.5 Entering the Market

After you have observed the evolution of the value for 15 periods the market stops at the red vertical line
and the button ENTRATA (ENTER) appears at the bottom of the screen (see top figure). When you press
the button you enter the market. This means that you “buy” the object at the current value and spend
e 2.59 as indicated at the top of the screen. You do not have a choice at which price to buy the object.
Once you press the button three things happen: 1) the Valore di entrata (Entry price) appears on top of
the screen in red (see bottom figure); 2) the value starts to change again and 3) the button changes to
USCITA (EXIT).

J.1.6 Exiting the Market

The choice you make in the market is when to exit. This is the point at which you “sell” the object and
obtain the amount of money equal to the current value. Your profit in the market is the amount you
received at the exit minus the amount you paid when you entered. For example, if you entered at the
value of e 2.59 and exited at the value of e 2.68 your profit is 2.68 – 2.59 = 0.09, or 9 cents. If you entered
at the value of e 2.59 and exited at the value of e 2.45 your profit is 2.45 – 2.59 = -0.14, or minus 14 cents.
Thus, YOUR PROFIT CAN BE NEGATIVE. If you do not choose to exit before the closure of the market
at period 50, your profit will be calculated using the last period value of the object.
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J.1.7 Observed and Unobserved Future

There are two possible scenarios, which can happen after you press the USCITA (EXIT) button, or sell
the object. In one scenario you will observe the evolution of the value of the object until the market
closure (after period 50). In the other case you will not observe the evolution of the value. You will be
informed about which scenario you are in BEFORE the opening of each market. Before each market you
will observe a screen with two possible phrases: “INFO DOPO l’uscita” (Information after exit) or “NO
INFO al’uscita” (No information after exit) (see figures). The former indicates that the market which you
will choose in next is the one with observable future value and the latter – the market with non-observable
future value. To make sure that you remember which scenario you are in, the “INFO DOPO” and “NO
INFO” signs will appear in the top left corner of the screen while the market is evolving.
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J.1.8 After Exiting the Market

After you exit the market, or press USCITA (EXIT) button, you will be provided with the information
on your profit. Top figure illustrates the scenario with observable future and the bottom figure – with
non-observable future. In both cases, you will see the “Valore di uscita” (exit value) in blue and profit in
green (if positive) or red (if negative). In case of non-observable future you will be also asked to wait until
the market closure which is the same time it would have taken the market to reach closure if you could
have observed the future value. When the market closes you can press PROSEGUI (CONTINUE) button
to proceed to the next market.

J.1.9 Payment

You payment in the experiment is determined as follows. Before the experiment you are given an endow-
ment of e 10. After you finish choosing in all 50 markets, one of them will be chosen at random and the
profit that you made in that market will be added to your endowment. So, if you earned e 3 in the chosen
market, your total payment will be e 10 + e 3 = e 13. If your profit was -e 3, your total payment will be
e 10 - e 3 = e 7. Notice that your profit can change between -e 10 and e 10. Thus you can earn minimum
of e 0 and maximum of e 20.

J.1.10 Trial Markets

Before the beginning of the task you will have an opportunity to familiarize yourself with the interface in
6 trial markets which will look exactly the same as the actual markets but with TRIAL DI PROVA (TRIAL
MARKET) written on the screen. You will not be paid for your decisions in trial markets.
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K Instructions (Italian)

K.1 Market Task
K.1.1 Informazioni Generali

Gentile partecipante,
Prenderai parte ad un esperimento comprendente due compiti decisionali e un questionario. Se segui
le istruzioni attentamente potrai guadagnare una considerevole somma di denaro, che dipenderà dalle
decisioni che prenderai durante l’esperimento. La somma da te guadagnata ti verrà pagata al termine
dell’esperimento.

Ti chiediamo per favore di non comunicare con gli altri partecipanti durante l’esperimento. Nel
caso tu abbia delle domande, chiedi allo sperimentatore alzando la mano. A quel punto lo sperimentatore
verrà alla tua postazione e risponderà alle tue domande.

Al termine dell’esperimento il pagamento verrà effettuato in CONTANTI.

K.1.2 Compito di Scelta

In questo compito ti verrà chiesto di prendere una decisione in 48 diversi problemi. Ogni problema è a
se stante e non dipende dall’esito ottenuto nei problemi precedenti. All’inizio del compito riceverai una
somma di partenza pari a 10 euro. In ogni problema potrai guadagnare o perdere un certo ammontare di
denaro, il quale verrà sommato o sottratto a questi 10 euro.
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K.1.3 Struttura di Campito di Scelta

Immagina di essere all’interno di un mercato finanziario e di dover decidere, ad ogni trial, quando incas-
sare l’ammontare investito. Ogni mercato (trial) inizia osservando il valore dell’oggetto del tuo investi-
mento per 15 periodi (ogni period dura 0.8 secondi). Durante questa prima fase, vedrai come il valore
dell’oggetto si è evoluto nei precedenti 15 periodi del mercato. Durante questi 15 periodi non potrai pren-
dere nessuna decisione. La figura a destra ti mostra un esempio di come il valore dell’oggetto può variare
durante questa prima fase. Quando la linea verticale rossa verrà raggiunta, significa che i 15 periodi della
fase di osservazione saranno terminati. A quel punto il valore corrente dell’oggetto corrisponderà al tuo
valore d’entrata nel mercato. La dicitura “Valore corrente” in alto ti mostra il valore dell’oggetto in ogni
periodo (tra e 0 e e 10).
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K.1.4 Il Processo Che Stabilisce il Valore

In ogni mercato il prezzo cambia seguendo un particolare processo. Dato il valore corrente in un periodo
del mercato, V, il valore nel periodo successivo (all’interno dello stesso mercato) dipende da 1) il valore
corrente, V, e 2) un numero generato in maniera random, S. In particolare, il valore nel periodo seguente
è uguale a 0.6V + S, dove S è un numero tra 0 e 4. Ciò significa che in ogni periodo qualunque numero tra
0 e 4 (per es. 2.1789 o 3.51) ha la stessa probabilità di essere scelto e di contribuire al valore futuro. Perciò
ogni numero nell’intervallo tra 0.6V e 0.6V + 4 ha la stessa probabilità di essere il valore dell’oggetto nel
prossimo periodo. La tabella qui di seguito riporta alcuni esempi. Nota che in ogni periodo il valore
corrente non può essere maggiore di e 10 né minore di e 0.

VALORE INTERVALLO DEL VALORE NEL PERIODO SUCCESSIVO
CORRENTE VALORE MINIMO VALORE MASSIMO

e 2 e 1.2 e 5.2
e 4 e 2.4 e 6.4
e 6 e 3.6 e 7.6
e 8 e 4.8 e 8.8
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K.1.5 Entrare nel Mercato

Dopo aver osservato 15 periodi il mercato si fermerà alla linea verticale rossa e il pulsante “ENTRATA”
apparirà in basso (vedi la figura in alto a destra). A questo punto per entrare nel mercato dovrai pre-
mere il tasto “ENTRATA.” Questo significa che effettivamente tu compri l’oggetto al valore corrente.
Nell’esempio indicato nella figura in alto spenderesti e 2.59. Non ti sarà possibile evitare di entrare nel
mercato e non potrai scegliere tu stesso a quale prezzo comprare l’oggetto. Una volta premuto il pulsante
“ENTRATA” il valore dell’oggetto comincerà a variare nuovamente e ti compariranno tre nuove infor-
mazioni a schermo (figura in basso a destra): 1) il “Valore di entrata” in rosso in alto a sinistra; 2) il valore
attuale dell’oggetto; 3) il pulsante “USCITA.”

K.1.6 Uscire dal Mercato (Uscita)

L’unica scelta a tua disposizione in ogni mercato sarà quando uscire. Questa scelta corrisponde al mo-
mento in cui decidi di vendere l’oggetto e intascare la somma di denaro pari al “Valore corrente.” Il tuo
guadagno nel mercato sarà la differenza tra il “Valore corrente” al momento di vendita dell’oggetto e il
“Valore di entrata.” Ad esempio, se tu entri quando l’oggetto vale e 2.59 ed esci al valore di e 2.68 il tuo
guadagno sarà pari a e 2.68 - e 2.59 = e 0.09, o 9 centesimi. Se invece entri al “Valore di entrata” pari
a e 2.59 ed esci quando il “Valore corrente” è e 2.45, il tuo guadagno sarà di e 2.45 - e 2.59 = e -0.14, o
un guadagno negativo di 14 centesimi. Perciò, IL TUO GUADAGNO NEL MERCATO PUO’ ESSERE
NEGATIVO. Se non esci prima della fine del mercato, che dura 50 periodi, il tuo guadagno sarà calcolato
usando il valore corrente nell’ultimo periodo.
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K.1.7 Futuro Osservato o non Osservato

Ci sono due possibili scenari alternativi che si possono realizzare dopo che hai cliccato sul pulsante “US-
CITA,” ovvero venduto l’oggetto. In uno scenario ti verrà mostrata l’evoluzione del valore dell’oggetto
fino alla chiusura del mercato (50esimo periodo). Nell’altro caso, dopo la vendita dell’oggetto non os-
serverai nulla, e un nuovo mercato inizierà. Sarai informato riguardo allo scenario in cui cui ti trovi
PRIMA dell’inizio di ogni mercato. Prima di ogni mercato, osserverai una schermata con due possibili
frasi: “INFO DOPO l’uscita” o “NO INFO all’uscita” (vedi le figure a destra). La prima dicitura indica
che ti trovi in un mercato in cui l’evoluzione del valore dopo la vendita è osservabile, mentre la seconda
dicitura ti informa che il futuro valore dell’oggetto non è osservabile. Per ricordarti in quale scenario ti
trovi, le diciture “INFO DOPO” e “NO INFO” sono mostrate in alto a sinistra della schermata in cui vedi
l’evoluzione del mercato.
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K.1.8 Dopo Essere Usciti dal Mercato

Dopo la tua uscita dal mercato, o dopo aver premuto il pulsante “USCITA,” riceverai informazioni sul
tuo guadagno. La figura in alto a destra ti mostra lo scenario “INFO DOPO,” dove il futuro è osservabile,
mentre la figura in basso ti mostra lo scenario “NO INFO,” dove il futuro non è osservabile. In entrambi
i casi, in alto a destra visualizzerai il “Valore di uscita” in blu, ed il tuo “Guadagno” in verde se positivo
e in rosso se negativo. Inoltre, nello scenario Info Dopo dovrai attendere il termine del mercato, che
corrisponde al tempo che il mercato avrebbe impiegato per raggiungere la sua naturale conclusione (50
periodi) se tu non avessi venduto l’oggetto prima. Raggiunto l’ultimo periodo potrai esaminare la tua
prova; per accedere al prossimo mercato dovrai cliccare sul pulsante “Prosegui.”

K.1.9 Pagamento

Il tuo guadagno nell’esperimento viene calcolato come segue. Prima dell’esperimento ti vengono dati
e 10 a disposizione. Quando hai finito di scegliere in tutti i 48 mercati, uno di questi verrà scelta in modo
casuale e il guadagno che tu fai in quel mercato sarà sommato ai e 10 di partenza. Perciò, se tu guadagni
e 3 nel mercato scelto, il tuo pagamento totale sarà e 10 + e 3 = e 13. Nel caso di un guadagno negativo,
ad esempio -e 3, il tuo pagamento totale sarà e 10 - e 3 = e 7. Nota che il tuo guadagno può variare tra
-e 10 e +e 10, perciò il tuo pagamento totale varia tra un minimo di e 0 e un massimo di e 20.

K.1.10 Mercati di Prova

Prima dell’inizio del compito ti viene data l’opportunità di familiarizzare con l’interfaccia in 6 mercati di
prova che assomigliano in tutto e per tutto ai mercati reali a cui parteciperai successivamente, con l’unica
differenza che in questi mercati la dicitura TRIAL DI PROVA compare sullo schermo. Non verrai pagato
per le tue decisioni nei mercati di prova.
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K.2 Holt and Laury Task (Italian)
DESCRIZIONE DELLA SECONDA PARTE DELL’ESPERIMENTO

In questa parte dell’esperimento ti verranno presentate 10 coppie di lotterie. Ogni lotteria ti garantisce
di ottenere, con una certa probabilità, una tra due possibili vincite. Per ogni coppia di lotterie, il tuo com-
pito sarà quello di scegliere la lotteria che preferisci giocare. Di seguito ti verrà presenata una descrizione
dettagliata del compito. Premere il pulsante OK per continuare.

DESCRIZIONE DEL COMPITO
Nella parte destra dello schermo sono riportate le 10 coppie di lotterie. Ci sono 10 righe che corrispon-

dono alle 10 scelte che dovrai effettuare. Ogni riga rappresenta una scelta tra due lotterie.
Per effettuare le tue scelte sarà sufficiente cliccare in corrispondenza della lotteria che preferisci. Una

volta che avrai scelto una lotteria, essa diventerà di colore rosso.
Dopo che avrai effettuato le tue 10 scelte, il computer selezionerà in modo casuale una delle 10 righe.

Infine, la lotteria da te scelta verrà giocata dal computer e tu riceverai la vincita corrispondente all’esito
della lotteria. La tua vincita ti verrà mostrata a schermo dopo che avrai completato e validato tutte le tue
scelte.

Ricorda, l’ammontare di denaro rappresentato nelle diverse lotterie è reale, perciò sarai pagato/a in
base alle scelte che effettuerai e secondo le regole appena descritte.

Se hai qualche dubbio sulla procedura ed il metodo di pagamento sentiti libero/a di chiedere chiari-
menti allo sperimentatore.
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