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a b s t r a c t

The single decision maker chooses one of the actions repeatedly. She chooses the action with the highest
weighted average of the past payoffs. In the long run either the action with highest expected payoff or the
action with highest minimal payoff is chosen depending on how weights evolve.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The environment in which economic agents make decisions
can be very complex. This accounts for the tendency of the
agents to simplify their decisions. We study the behavior of a
single decision maker who does not deliberately randomize while
choosing among a finite set of actions repeatedly (Sarin and Vahid,
1999). Instead, she chooses the action with the highest subjective
assessment, which is represented by the weighted average of the
past payoffs. The decision maker has no information about the
environment apart from the payoffs she receives.

We extend the model of Sarin and Vahid (1999) by analyzing
the long run behavior of the decisionmaker for very generalweight
structures. In particular, weights can change from period to period
with little restrictions. In addition, we allow for the possibility
that the decision maker makes mistakes and chooses the action
not originally intended. We show that the long run behavior
of the decision maker either is characterized by only two very
distinctive regimes, independent of the relative payoffs obtained
from different actions, or cannot be characterized because of the
dependence on the relative payoffs.

2. The model

The decision maker faces the same decision problem repeat-
edly. Each period she is choosing one of the I actions from a finite
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set A = {a1, a2, . . . , aI}. After the action is chosen, the state of the
world ωt ∈ Ω is realized (t stands for the time period). Ω is as-
sumed finite. There is some probability measure defined on Ω . For
each t ,ωt is identically and independently distributed in each time
period. After the state of the world is chosen, the decision maker
receives her payoff from choosing action i according to the utility
function ui : Ω → R+.

Before each period t the decision maker calculates subjective
assessments α(t) = (α1(t), α2(t), . . . , αI(t)) for each action.
Then, with probability 1−ε she chooses the actionwith the highest
subjective assessment and with small probability ε she makes a
mistake, in which case she chooses some other action. All other
actions have equal probability of being chosen. Initial assessments
before period 1 are denoted α(0) = (α1(0), α2(0), . . . , αI(0))
and assumed to lie in between maximum and minimum possible
utilities for each action.

The subjective assessment for an action is updated whenever
that action is chosen. Consider some fixed infinite triangular array
of weights
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where
k

j=0 λkj = 1, ∀k ∈ N. Before period t , after action i
was chosen k times, the assessment is αi(t) =

k
j=1 λk(k−j)uij +

λkkαi(0), where uij is the utility from action i after it was chosen
for the jth time. Here the most recent utility observation uik is
assigned the weight λk0 and the oldest one, αi(0), the weight λkk.
The assessments of actions that were not chosen in period t − 1
stay the same and carry over to period t .

We are interested in the long runbehavior of the decisionmaker
as t → ∞, which depends on the evolution of weights over
time. Consider the vector space RN of all infinite sequences of real
numbers x = (x1, x2, . . .)with the sup norm ∥x∥ = supt∈N |xt |. The
metric d(x, y) = ∥x − y∥, thus, generates the topology on RN. Any
row λk = (λk0, λk1, . . . , λkk) can be naturally associated with an
element (λk0, λk1, . . . , λkk, 0, 0, . . .) ofRN. Abusing notation, let us
write λk ∈ RN. Consider two cases:1

Case I: limk→∞ λk = 0. This case consists of the triangular arrays
that put vanishing weights on infinitely many past observations
as t → ∞. The common example of such triangular array is the
average of all past observations: λk =

 1
k+1 ,

1
k+1 , . . . ,

1
k+1


.

Case II: limk→∞ λk = λ∞. Arrays in this case put positive weights
only on some observations in the past. We assume that for all
k, j ≥ Kλkj = 0: only K latest payoffs are remembered. Any limit
λ∞ has

K
j=0 λ∞j = 1 and


∞

j=K λ∞j = 0.

3. Results

Proposition 1. If weights evolve according to Case I then the decision
maker asymptotically plays the action with maximal expected payoff
with probability 1 − ε.

Proof. Let us show that the assessments of all actions converge
to the expected value of payoffs. Consider some action i and time
periods t1, t2, . . . when this action is played (t1 < t2 < · · ·). We
are interested in the behavior of the assessment αi(tn) as n → ∞

(since the decision maker makes mistakes we can be sure that
any action is played infinitely often). For each update period tn we
know that

αi(tn) = λn0ui(ωtn) + λn1ui(ωtn−1) + · · · + λnnαi(0),

whereui(ωt) is the realization of the payoff in period t . To prove the
statementwe use the theoremof Fristedt andGray (1997, Theorem
25, p. 311). First we show that the assumptions of the theorem are
satisfied and then explicitly find the limiting distribution of αi(t).

Consider the triangular array of random variables:

αi(0)
λ10ui(ωt1) λ11αi(0)
λ20ui(ωt2) λ21ui(ωt1) λ22αi(0)
...

λn0ui(ωtn) λn1ui(ωtn−1) . . . λnnαi(0)
...

This array is row-wise independent.2 Indeed, each time the
decision maker plays ai she receives independent realization of
ui(·). Moreover, this array is uniformly asymptotically negligible:
this is easy to see since, by the definition of Case I weights, for any
fixed δ > 0 we can always find the row of weights small enough
for supk P[|λnkui(ωtn−k)| > δ] = 0 to be true for some n and any

1 From here on, all limits of sequences λk in RN are taken in the topology
generated by d(x, y) = ∥x−y∥. 0 is naturally understood as the sequence (0, 0, . . .).
2 For the definitions of the terms used in this proof see Fristedt and Gray (1997).

row that follows. This is the consequence of the assumption that
ui(·) can take on values only in the bounded interval of R.

Now let us verify the conditions of the theorem. We claim that
the Lévymeasure ν(x, ∞] = 0, ∀x > 0 satisfies the first condition.
For any x > 0 we can find n big enough so that for all k ≤ n
we have P[λnkui(ωtn−k) > x] = 0, hence the probability measure
corresponding to any random variable λℓkui(ωtℓ−k) where ℓ ≥ n
and k ≤ ℓ is zero on the interval [x, ∞). Thus, the limit of the sums
of these measures in each row is zero.

Denote by Q i
nk the distribution of λnkui(ωtn−k) and consider the

integral
(0,δ]

x Q i
nk(dx).

Since limn→∞ λnk = 0 there exists n big enough so that
Q i
nk[δ, ∞) = 0. Therefore for all ℓ ≥ n
(0,δ]

x Q i
ℓk(dx) = λℓkE[ui(·)]

and
ℓ

k=1


(0,δ]

x Q i
ℓk(dx) = E[ui(·)]

So the second condition of the theorem is clearly satisfied:

lim
δ↘0

lim sup
n→∞

n
k=1


(0,δ]

x Q i
nk(dx)

= lim
δ↘0

lim inf
n→∞

n
k=1


(0,δ]

x Q i
nk(dx) = E[ui(·)].

Now, the theorem tells us that the assessment converges to
a random variable which corresponds to the pair (E[ui(·)], 0) via
the Lévy–Khinchin Representation Theorem. This random variable
has amoment generating function exp(−E[ui(·)])which obviously
corresponds to the delta distribution at E[ui(·)]. This finishes the
proof of the statement above.

In the model the decision maker makes mistakes, so all the
actions are played infinitely often. Therefore, as it was shown,
assessments of all actions converge to the expected value. Since the
decision maker chooses the action with the highest assessment,
she will eventually choose the one with maximum expected
payoff. �

For the Case II result we need some definitions first. Since λ∞

puts weights only on the last K utilities, there are only finitely
many values of the assessments with weights λ∞. Let Mi denote
the finite set of such assessments for action i, and M = ×

I
j=1 Mj

denote the finite set of all possible assessments combinations.3 Let
Pε denote the Markov chain defined by the choice procedure on
the set M . Let amaxmin ∈ A denote the action with the maximal
minimum utility.

Proposition 2. If weights evolve according to Case II then the
decision maker asymptotically plays amaxmin most of the time.4

Proof. According to Theorem3.1 of Sarin (2000), theMarkov chain
P0 converges to the choice of amaxmin with probability 1. For ε > 0,
Pε is a regular perturbed Markov process.5 This is clear since ε

3 To avoid uninteresting assumptions about tie breaking, assume that no two sets
Mi and Mj contain the same numbers.
4 See proof for the exact meaning of ‘‘most of the time’’.
5 See definition in Young (1998, p. 54).
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enters only as a linear term cε for some constant c in transition
probabilities of Pε . According to Theorem 3.1 of Young (1998) the
stationary distribution µε of Pε converges to one of the stationary
distributions of P0 as ε → 0. Therefore, since all stationary
distributions of P0 involve playing amaxmin with probability 1, for
small ε > 0 the decision maker will play amaxmin most of the
time.

It is left to show that the same asymptotic behavior is inherent
to the process with Case II weights. Consider the finite set M =

∪
I
j=1 Mj ⊂ R. Since all actions are chosen infinitely many times

and weights converge in the sup norm, there will be a time period
t after which all possible assessments for each action i made
with current weights λt

i will lie in some open balls around the
corresponding assessments in M . Moreover, these balls will all be
pairwise disjoint. This implies that the Markov chain Pε,t with the
state space M t , generated using current weights (λt

i )i∈A, will put
exactly the same probabilities on transitions as Pε with the state
space M . Thus, after period t , the behavior of the decision maker
with changing weights will be indistinguishable from the behavior
of the decision maker with weights λ∞. �

4. Discussion

The actions chosen by the decision maker in the long run
differ depending on the weights the decision maker attaches to
the past payoffs. If she cares only about recent payoffs then the
maximin action is chosen in the long run. If the decision maker
cares about payoffs received a long time ago then she converges to
the maximal expected payoff action. It is relatively easy to see that
exact predictions like this are impossible to make for sequences of
weights that evolve differently from Cases I and II. In particular,
such sequences would put a positive weight on some payoffs and
distribute the rest of the weight among infinitely many payoffs as
time goes to infinity. For example, if someweight, say 1

2 , is attached
to the last payoff and the rest of the weight is equally distributed
among all other past payoffs, the assessment of the action i will
converge to the random variable 1

2 (ui(·) + E[ui(·)]). In this case

the long run behavior of the decisionmakerwill depend on relative
values of the utilities obtained fromdifferent actions and cannot be
characterized in general.

Since the model gives very specific predictions for Cases I and
II it would be interesting to test experimentally if actual human
behavior conforms to Cases I or II, or is neither and depends on
relative utilities. This can shed some light on how aggregation of
past experiences is done in the brain.6

Themodel can be extended in several ways. First, the technique
used to prove the convergence result can be applied almost
without changes to the case of infinite state space Ω . The only
condition that matters is bounded support of the distributions
of payoffs. Second, it could be interesting to investigate the case
when the action space is large and the decisionmaker experiments
only in the vicinity of the action she plays. Third, one might check
how this model performs in games (see e.g. Huck and Sarin, 2004;
Young, 2009).
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